IDEAS home Printed from https://ideas.repec.org/p/zbw/sfb649/sfb649dp2013-034.html
   My bibliography  Save this paper

Robust estimation and inference for threshold models with integrated regressors

Author

Listed:
  • Chen, Haiqiang

Abstract

This paper studies the robust estimation and inference of threshold models with integrated regres- sors. We derive the asymptotic distribution of the profiled least squares (LS) estimator under the diminishing threshold effect assumption that the size of the threshold effect converges to zero. Depending on how rapidly this sequence converges, the model may be identified or only weakly identified and asymptotic theorems are developed for both cases. As the convergence rate is unknown in practice, a model-selection procedure is applied to determine the model identification strength and to construct robust confidence intervals, which have the correct asymptotic size irrespective of the magnitude of the threshold effect. The model is then generalized to incorporate endogeneity and serial correlation in error terms, under which, we design a Cochrane-Orcutt feasible generalized least squares (FGLS) estimator which enjoys efficiency gains and robustness against different error specifications, including both I(0) and I(1) errors. Based on this FGLS estimator, we further develop a sup-Wald statistic to test for the existence of the threshold effect. Monte Carlo simulations show that our estimators and test statistics perform well.

Suggested Citation

  • Chen, Haiqiang, 2013. "Robust estimation and inference for threshold models with integrated regressors," SFB 649 Discussion Papers 2013-034, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
  • Handle: RePEc:zbw:sfb649:sfb649dp2013-034
    as

    Download full text from publisher

    File URL: https://www.econstor.eu/bitstream/10419/79634/1/755311272.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Park, Joon Y, 1992. "Canonical Cointegrating Regressions," Econometrica, Econometric Society, vol. 60(1), pages 119-143, January.
    2. Seo, Myung Hwan & Linton, Oliver, 2007. "A smoothed least squares estimator for threshold regression models," Journal of Econometrics, Elsevier, vol. 141(2), pages 704-735, December.
    3. Balke, Nathan S & Fomby, Thomas B, 1997. "Threshold Cointegration," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 38(3), pages 627-645, August.
    4. Caner, Mehmet, 2007. "Boundedly pivotal structural change tests in continuous updating GMM with strong, weak identification and completely unidentified cases," Journal of Econometrics, Elsevier, vol. 137(1), pages 28-67, March.
    5. Peter C. B. Phillips & Bruce E. Hansen, 1990. "Statistical Inference in Instrumental Variables Regression with I(1) Processes," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 57(1), pages 99-125.
    6. Chen, Haiqiang, 2015. "Robust Estimation And Inference For Threshold Models With Integrated Regressors," Econometric Theory, Cambridge University Press, vol. 31(4), pages 778-810, August.
    7. Potter, Simon M, 1995. "A Nonlinear Approach to US GNP," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 10(2), pages 109-125, April-Jun.
    8. Elliott, Graham & Muller, Ulrich K., 2007. "Confidence sets for the date of a single break in linear time series regressions," Journal of Econometrics, Elsevier, vol. 141(2), pages 1196-1218, December.
    9. Durlauf, Steven N & Johnson, Paul A, 1995. "Multiple Regimes and Cross-Country Growth Behaviour," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 10(4), pages 365-384, Oct.-Dec..
    10. Jesús Gonzalo & Jean‐Yves Pitarakis, 2006. "Threshold Effects in Cointegrating Relationships," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 68(s1), pages 813-833, December.
    11. Marmer, Vadim, 2008. "Nonlinearity, nonstationarity, and spurious forecasts," Journal of Econometrics, Elsevier, vol. 142(1), pages 1-27, January.
    12. P. C. B. Phillips & S. N. Durlauf, 1986. "Multiple Time Series Regression with Integrated Processes," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 53(4), pages 473-495.
    13. Jesús Gonzalo & Jean-Yves Pitarakis, 2011. "Regime-Specific Predictability in Predictive Regressions," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 30(2), pages 229-241, June.
    14. Phillips, Peter C.B. & Lee, Ji Hyung, 2013. "Predictive regression under various degrees of persistence and robust long-horizon regression," Journal of Econometrics, Elsevier, vol. 177(2), pages 250-264.
    15. Donald W. K. Andrews & C. John McDermott, 1995. "Nonlinear Econometric Models with Deterministically Trending Variables," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 62(3), pages 343-360.
    16. Bruce E. Hansen, 2000. "Sample Splitting and Threshold Estimation," Econometrica, Econometric Society, vol. 68(3), pages 575-604, May.
    17. Campbell, John Y. & Yogo, Motohiro, 2006. "Efficient tests of stock return predictability," Journal of Financial Economics, Elsevier, vol. 81(1), pages 27-60, July.
    18. Stock, James H & Watson, Mark W, 1993. "A Simple Estimator of Cointegrating Vectors in Higher Order Integrated Systems," Econometrica, Econometric Society, vol. 61(4), pages 783-820, July.
    19. Mehmet Caner & Bruce E. Hansen, 2001. "Threshold Autoregression with a Unit Root," Econometrica, Econometric Society, vol. 69(6), pages 1555-1596, November.
    20. Andrews, Donald W K, 1993. "Tests for Parameter Instability and Structural Change with Unknown Change Point," Econometrica, Econometric Society, vol. 61(4), pages 821-856, July.
    21. Li, Dong & Ling, Shiqing, 2012. "On the least squares estimation of multiple-regime threshold autoregressive models," Journal of Econometrics, Elsevier, vol. 167(1), pages 240-253.
    22. Park, Joon Y & Phillips, Peter C B, 2001. "Nonlinear Regressions with Integrated Time Series," Econometrica, Econometric Society, vol. 69(1), pages 117-161, January.
    23. Gonzalo, Jesus & Pitarakis, Jean-Yves, 2002. "Estimation and model selection based inference in single and multiple threshold models," Journal of Econometrics, Elsevier, vol. 110(2), pages 319-352, October.
    24. Perron, Pierre & Yabu, Tomoyoshi, 2009. "Testing for Shifts in Trend With an Integrated or Stationary Noise Component," Journal of Business & Economic Statistics, American Statistical Association, vol. 27(3), pages 369-396.
    25. Hansen, Bruce E, 1996. "Inference When a Nuisance Parameter Is Not Identified under the Null Hypothesis," Econometrica, Econometric Society, vol. 64(2), pages 413-430, March.
    26. Cai, Zongwu & Li, Qi & Park, Joon Y., 2009. "Functional-coefficient models for nonstationary time series data," Journal of Econometrics, Elsevier, vol. 148(2), pages 101-113, February.
    27. Bierens, Herman J. & Martins, Luis F., 2010. "Time-Varying Cointegration," Econometric Theory, Cambridge University Press, vol. 26(5), pages 1453-1490, October.
    28. Yu, Ping, 2012. "Likelihood estimation and inference in threshold regression," Journal of Econometrics, Elsevier, vol. 167(1), pages 274-294.
    29. Qiying Wang & Peter C. B. Phillips, 2009. "Structural Nonparametric Cointegrating Regression," Econometrica, Econometric Society, vol. 77(6), pages 1901-1948, November.
    30. Kasparis, Ioannis, 2008. "Detection Of Functional Form Misspecification In Cointegrating Relations," Econometric Theory, Cambridge University Press, vol. 24(5), pages 1373-1403, October.
    31. Choi, Chi-Young & Hu, Ling & Ogaki, Masao, 2008. "Robust estimation for structural spurious regressions and a Hausman-type cointegration test," Journal of Econometrics, Elsevier, vol. 142(1), pages 327-351, January.
    32. Park, Joon Y. & Hahn, Sang B., 1999. "Cointegrating Regressions With Time Varying Coefficients," Econometric Theory, Cambridge University Press, vol. 15(5), pages 664-703, October.
    33. Shi, Xiaoxia & Phillips, Peter C.B., 2012. "Nonlinear Cointegrating Regression Under Weak Identification," Econometric Theory, Cambridge University Press, vol. 28(3), pages 509-547, June.
    34. Hansen Bruce E., 1997. "Inference in TAR Models," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 2(1), pages 1-16, April.
    35. Xiao, Zhijie, 2009. "Functional-coefficient cointegration models," Journal of Econometrics, Elsevier, vol. 152(2), pages 81-92, October.
    36. Taylor, John B., 1993. "Discretion versus policy rules in practice," Carnegie-Rochester Conference Series on Public Policy, Elsevier, vol. 39(1), pages 195-214, December.
    37. Phillips, Peter C.B. & Hodgson, Douglas J., 1994. "Spurious Regression and Generalized Least Squares," Econometric Theory, Cambridge University Press, vol. 10(05), pages 967-968, December.
    38. Choi, In & Saikkonen, Pentti, 2010. "Tests For Nonlinear Cointegration," Econometric Theory, Cambridge University Press, vol. 26(3), pages 682-709, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lixiong Yang, 2022. "Threshold mixed data sampling (TMIDAS) regression models with an application to GDP forecast errors," Empirical Economics, Springer, vol. 62(2), pages 533-551, February.
    2. Chen, Haiqiang, 2015. "Robust Estimation And Inference For Threshold Models With Integrated Regressors," Econometric Theory, Cambridge University Press, vol. 31(4), pages 778-810, August.
    3. Lixiong Yang, 2023. "Variable selection in threshold model with a covariate-dependent threshold," Empirical Economics, Springer, vol. 65(1), pages 189-202, July.
    4. Fukang Zhu & Mengya Liu & Shiqing Ling & Zongwu Cai, 2020. "Testing for Structural Change of Predictive Regression Model to Threshold Predictive Regression Model," WORKING PAPERS SERIES IN THEORETICAL AND APPLIED ECONOMICS 202021, University of Kansas, Department of Economics, revised Dec 2020.
    5. Poeschel, Friedrich, 2012. "Assortative matching through signals," VfS Annual Conference 2012 (Goettingen): New Approaches and Challenges for the Labor Market of the 21st Century 62061, Verein für Socialpolitik / German Economic Association.
    6. Ebrahimi Salari, Taghi & Naji Meidani, Ali Akbar & Shabani Koshalshahi, Zeinab & Ajori Ayask, Amir Abbas, 2022. "The threshold effect of HDI on the relationship between financial development and oil revenues," Resources Policy, Elsevier, vol. 76(C).
    7. Lixiong Yang & Chingnun Lee & I‐Po Chen, 2021. "Threshold model with a time‐varying threshold based on Fourier approximation," Journal of Time Series Analysis, Wiley Blackwell, vol. 42(4), pages 406-430, July.
    8. Christis Katsouris, 2023. "Estimation and Inference in Threshold Predictive Regression Models with Locally Explosive Regressors," Papers 2305.00860, arXiv.org, revised May 2023.
    9. repec:wyi:journl:002203 is not listed on IDEAS
    10. Hasanov, Fakhri J. & Aliyev, Ruslan & Taskin, Dilvin & Suleymanov, Elchin, 2023. "Oil rents and non-oil economic growth in CIS oil exporters. The role of financial development," Resources Policy, Elsevier, vol. 82(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. repec:hum:wpaper:sfb649dp2013-034 is not listed on IDEAS
    2. repec:wyi:journl:002203 is not listed on IDEAS
    3. Yu, Ping & Phillips, Peter C.B., 2018. "Threshold regression with endogeneity," Journal of Econometrics, Elsevier, vol. 203(1), pages 50-68.
    4. Li, Dong & Tong, Howell, 2016. "Nested sub-sample search algorithm for estimation of threshold models," LSE Research Online Documents on Economics 68880, London School of Economics and Political Science, LSE Library.
    5. repec:wyi:journl:002195 is not listed on IDEAS
    6. Gonzalo, Jesùs & Pitarakis, Jean-Yves, 2005. "Threshold effects In multivariate error correction models," Discussion Paper Series In Economics And Econometrics 0501, Economics Division, School of Social Sciences, University of Southampton.
    7. Gu, Jingping & Liang, Zhongwen, 2014. "Testing cointegration relationship in a semiparametric varying coefficient model," Journal of Econometrics, Elsevier, vol. 178(P1), pages 57-70.
    8. Haiqi Li Author-Name-First: Haiqi & Jing Zhang & Chaowen Zheng, 2023. "Estimating and Testing for Functional Coefficient Quantile Cointegrating Regression," Economics Discussion Papers em-dp2023-07, Department of Economics, University of Reading.
    9. Jesús Gonzalo & Jean‐Yves Pitarakis, 2006. "Threshold Effects in Cointegrating Relationships," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 68(s1), pages 813-833, December.
    10. Jesús Gonzalo & Jean-Yves Pitarakis, 2011. "Regime-Specific Predictability in Predictive Regressions," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 30(2), pages 229-241, June.
    11. Jesús Gonzalo & Jean-Yves Pitarakis, 2013. "Estimation and inference in threshold type regime switching models," Chapters, in: Nigar Hashimzade & Michael A. Thornton (ed.), Handbook of Research Methods and Applications in Empirical Macroeconomics, chapter 8, pages 189-205, Edward Elgar Publishing.
    12. Christis Katsouris, 2023. "Estimation and Inference in Threshold Predictive Regression Models with Locally Explosive Regressors," Papers 2305.00860, arXiv.org, revised May 2023.
    13. Gonzalo, Jesus & Pitarakis, Jean-Yves, 2002. "Estimation and model selection based inference in single and multiple threshold models," Journal of Econometrics, Elsevier, vol. 110(2), pages 319-352, October.
    14. Chen, Haiqiang & Fang, Ying & Li, Yingxing, 2015. "Estimation And Inference For Varying-Coefficient Models With Nonstationary Regressors Using Penalized Splines," Econometric Theory, Cambridge University Press, vol. 31(4), pages 753-777, August.
    15. Kasparis, Ioannis & Andreou, Elena & Phillips, Peter C.B., 2015. "Nonparametric predictive regression," Journal of Econometrics, Elsevier, vol. 185(2), pages 468-494.
    16. Gonzalo, Jesus & Pitarakis, Jean-Yves, 2010. "Regime specific predictability in predictive regressions," Discussion Paper Series In Economics And Econometrics 0916, Economics Division, School of Social Sciences, University of Southampton.
    17. Berenguer Rico, Vanessa, 2013. "Co-summability from linear to non-linear cointegration," UC3M Working papers. Economics we1312, Universidad Carlos III de Madrid. Departamento de Economía.
    18. Yoonseok Lee & Yulong Wang, 2020. "Inference in Threshold Models," Center for Policy Research Working Papers 223, Center for Policy Research, Maxwell School, Syracuse University.
    19. Skrobotov, Anton, 2021. "Structural breaks in cointegration models," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 63, pages 117-141.
    20. Tu, Yundong & Liang, Han-Ying & Wang, Qiying, 2022. "Nonparametric inference for quantile cointegrations with stationary covariates," Journal of Econometrics, Elsevier, vol. 230(2), pages 453-482.
    21. Pitarakis Jean-Yves, 2006. "Model Selection Uncertainty and Detection of Threshold Effects," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 10(1), pages 1-30, March.
    22. de Mello Luiz & Moccero Diego & Mogliani Matteo, 2013. "Do Latin American Central Bankers Behave Non-Linearly? The Experiences of Brazil, Chile, Colombia and Mexico," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 17(2), pages 141-165, April.
    23. Phillips, Peter C.B. & Li, Degui & Gao, Jiti, 2017. "Estimating smooth structural change in cointegration models," Journal of Econometrics, Elsevier, vol. 196(1), pages 180-195.

    More about this item

    Keywords

    Threshold effects; Integrated processes; Nonlinear cointegration; Weak identification;
    All these keywords.

    JEL classification:

    • C12 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Hypothesis Testing: General
    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
    • C52 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Evaluation, Validation, and Selection

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:zbw:sfb649:sfb649dp2013-034. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ZBW - Leibniz Information Centre for Economics (email available below). General contact details of provider: https://edirc.repec.org/data/sohubde.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.