IDEAS home Printed from https://ideas.repec.org/p/zbw/sfb649/sfb649dp2012-067.html
   My bibliography  Save this paper

Can the market forecast the weather better than meteorologists?

Author

Listed:
  • Ritter, Matthias

Abstract

Many companies depend on weather conditions, so they require reliable weather forecasts for production planning or risk hedging. In this article, we propose a new way of gaining weather forecasts by exploiting the forward-looking information included in the market prices of weather derivatives traded at the Chicago Mercantile Exchange (CME). For this purpose, the CME futures prices of two monthly temperature indices relevant for the energy sector are compared with index forecasts derived from meteorological temperature forecasts. It turns out that the market prices generally outperform the meteorological forecasts in predicting the outcome of the monthly index. Hence, companies whose profit strongly depends on these indices, such as energy companies, can profit from this additional information source about future weather.

Suggested Citation

  • Ritter, Matthias, 2012. "Can the market forecast the weather better than meteorologists?," SFB 649 Discussion Papers 2012-067, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
  • Handle: RePEc:zbw:sfb649:sfb649dp2012-067
    as

    Download full text from publisher

    File URL: https://www.econstor.eu/bitstream/10419/79581/1/731794575.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Dorfleitner, Gregor & Wimmer, Maximilian, 2010. "The pricing of temperature futures at the Chicago Mercantile Exchange," Journal of Banking & Finance, Elsevier, vol. 34(6), pages 1360-1370, June.
    2. Sean D. Campbell & Francis X. Diebold, 2005. "Weather Forecasting for Weather Derivatives," Journal of the American Statistical Association, American Statistical Association, vol. 100, pages 6-16, March.
    3. Pardo, Angel & Meneu, Vicente & Valor, Enric, 2002. "Temperature and seasonality influences on Spanish electricity load," Energy Economics, Elsevier, vol. 24(1), pages 55-70, January.
    4. Roll, Richard, 1984. "Orange Juice and Weather," American Economic Review, American Economic Association, vol. 74(5), pages 861-880, December.
    5. Sailor, David J. & Muñoz, J.Ricardo, 1997. "Sensitivity of electricity and natural gas consumption to climate in the U.S.A.—Methodology and results for eight states," Energy, Elsevier, vol. 22(10), pages 987-998.
    6. Svec, J. & Stevenson, M., 2007. "Modelling and forecasting temperature based weather derivatives," Global Finance Journal, Elsevier, vol. 18(2), pages 185-204.
    7. Soares, Lacir J. & Medeiros, Marcelo C., 2008. "Modeling and forecasting short-term electricity load: A comparison of methods with an application to Brazilian data," International Journal of Forecasting, Elsevier, vol. 24(4), pages 630-644.
    8. Ritter, Matthias & Mußhoff, Oliver & Odening, Martin, 2010. "Meteorological forecasts and the pricing of weather derivatives," SFB 649 Discussion Papers 2010-043, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. repec:hum:wpaper:sfb649dp2012-067 is not listed on IDEAS
    2. Rui Zhou & Johnny Siu-Hang Li & Jeffrey Pai, 2019. "Pricing temperature derivatives with a filtered historical simulation approach," The European Journal of Finance, Taylor & Francis Journals, vol. 25(15), pages 1462-1484, October.
    3. Härdle, Wolfgang Karl & López-Cabrera, Brenda & Ritter, Matthias, 2012. "Forecast based pricing of weather derivatives," SFB 649 Discussion Papers 2012-027, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
    4. Mestekemper, Thomas & Kauermann, Göran & Smith, Michael S., 2013. "A comparison of periodic autoregressive and dynamic factor models in intraday energy demand forecasting," International Journal of Forecasting, Elsevier, vol. 29(1), pages 1-12.
    5. Cui, Hairong & Zhou, Ying & Dzandu, Michael D. & Tang, Yinshan & Lu, Xunfa, 2019. "Is temperature-index derivative suitable for China?," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 536(C).
    6. repec:hum:wpaper:sfb649dp2014-006 is not listed on IDEAS
    7. Groll, Andreas & López-Cabrera, Brenda & Meyer-Brandis, Thilo, 2016. "A consistent two-factor model for pricing temperature derivatives," Energy Economics, Elsevier, vol. 55(C), pages 112-126.
    8. Hipòlit Torró, 2007. "Forecasting Weekly Electricity Prices at Nord Pool," Working Papers 2007.88, Fondazione Eni Enrico Mattei.
    9. repec:hum:wpaper:sfb649dp2012-027 is not listed on IDEAS
    10. Ahmet Göncü, 2013. "Comparison of temperature models using heating and cooling degree days futures," Journal of Risk Finance, Emerald Group Publishing, vol. 14(2), pages 159-178, February.
    11. Yau, Y.H. & Pean, H.L., 2011. "The climate change impact on air conditioner system and reliability in Malaysia—A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(9), pages 4939-4949.
    12. Yu, William & Jamasb, Tooraj & Pollitt, Michael, 2009. "Does weather explain cost and quality performance? An analysis of UK electricity distribution companies," Energy Policy, Elsevier, vol. 37(11), pages 4177-4188, November.
    13. Bianchi, Robert J. & Drew, Michael E. & Fan, John Hua, 2016. "Commodities momentum: A behavioral perspective," Journal of Banking & Finance, Elsevier, vol. 72(C), pages 133-150.
    14. Psiloglou, B.E. & Giannakopoulos, C. & Majithia, S. & Petrakis, M., 2009. "Factors affecting electricity demand in Athens, Greece and London, UK: A comparative assessment," Energy, Elsevier, vol. 34(11), pages 1855-1863.
    15. Vaz, Lucélia Viviane & Filho, Getulio Borges da Silveira, 2017. "Functional Autoregressive Models: An Application to Brazilian Hourly Electricity Load," Brazilian Review of Econometrics, Sociedade Brasileira de Econometria - SBE, vol. 37(2), November.
    16. Jr‐Wei Huang & Sharon S. Yang & Chuang‐Chang Chang, 2018. "Modeling temperature behaviors: Application to weather derivative valuation," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 38(9), pages 1152-1175, September.
    17. Niematallah Elamin & Mototsugu Fukushige, 2017. "The 2011 Japanese energy crisis: Effects on the magnitude and pattern of load demand," Discussion Papers in Economics and Business 17-19, Osaka University, Graduate School of Economics.
    18. Chang, Yoosoon & Kim, Chang Sik & Miller, J. Isaac & Park, Joon Y. & Park, Sungkeun, 2016. "A new approach to modeling the effects of temperature fluctuations on monthly electricity demand," Energy Economics, Elsevier, vol. 60(C), pages 206-216.
    19. Mu, Xiaoyi, 2007. "Weather, storage, and natural gas price dynamics: Fundamentals and volatility," Energy Economics, Elsevier, vol. 29(1), pages 46-63, January.
    20. Miller, J. Isaac & Nam, Kyungsik, 2022. "Modeling peak electricity demand: A semiparametric approach using weather-driven cross-temperature response functions," Energy Economics, Elsevier, vol. 114(C).
    21. Dorfleitner, Gregor & Wimmer, Maximilian, 2010. "The pricing of temperature futures at the Chicago Mercantile Exchange," Journal of Banking & Finance, Elsevier, vol. 34(6), pages 1360-1370, June.
    22. Gupta, Eshita, 2012. "Global warming and electricity demand in the rapidly growing city of Delhi: A semi-parametric variable coefficient approach," Energy Economics, Elsevier, vol. 34(5), pages 1407-1421.
    23. Jacob Boudoukh & Matthew Richardson & YuQing Shen & Robert F. Whitelaw, 2003. "Do Asset Prices Reflect Fundamentals? Freshly Squeezed Evidence from the OJ Market," NBER Working Papers 9515, National Bureau of Economic Research, Inc.

    More about this item

    Keywords

    Weather derivatives; weather forecasts; CME; energy sector;
    All these keywords.

    JEL classification:

    • G15 - Financial Economics - - General Financial Markets - - - International Financial Markets
    • G17 - Financial Economics - - General Financial Markets - - - Financial Forecasting and Simulation
    • Q41 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - Demand and Supply; Prices
    • Q47 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - Energy Forecasting

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:zbw:sfb649:sfb649dp2012-067. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ZBW - Leibniz Information Centre for Economics (email available below). General contact details of provider: https://edirc.repec.org/data/sohubde.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.