IDEAS home Printed from https://ideas.repec.org/p/zbw/sfb649/sfb649dp2009-004.html
   My bibliography  Save this paper

New recipes for estimating default intensities

Author

Listed:
  • Baranovski, Alexander
  • von Lieres und Wilkau, Carsten
  • Wilch, André

Abstract

This paper presents a new approach to deriving default intensities from CDS or bond spreads that yields smooth intensity curves required e.g. for pricing or risk management purposes. Assuming continuous premium or coupon payments, the default intensity can be obtained by solving an integral equation (Volterra equation of 2nd kind). This integral equation is shown to be equivalent to an ordinary linear differential equation of 2nd order with time dependent coefficients, which is numerically much easier to handle. For the special case of Nelson Siegel CDS term structure models, the problem permits a fully analytical solution. A very good and at the same time simple approximation to this analytical solution is derived, which serves as a recipe for easy implementation. Finally, it is shown how the new approach can be employed to estimate stochastic term structure models like the CIR model.

Suggested Citation

  • Baranovski, Alexander & von Lieres und Wilkau, Carsten & Wilch, André, 2009. "New recipes for estimating default intensities," SFB 649 Discussion Papers 2009-004, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
  • Handle: RePEc:zbw:sfb649:sfb649dp2009-004
    as

    Download full text from publisher

    File URL: https://www.econstor.eu/bitstream/10419/25320/1/590230492.PDF
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Chen, Ying & Härdle, Wolfgang Karl & Pigorsch, Uta, 2010. "Localized Realized Volatility Modeling," Journal of the American Statistical Association, American Statistical Association, vol. 105(492), pages 1376-1393.
    2. Wei Xu & Guenther Filler & Martin Odening & Ostap Okhrin, 2010. "On the systemic nature of weather risk," Agricultural Finance Review, Emerald Group Publishing Limited, vol. 70(2), pages 267-284, August.
    3. Nelson, Charles R & Siegel, Andrew F, 1987. "Parsimonious Modeling of Yield Curves," The Journal of Business, University of Chicago Press, vol. 60(4), pages 473-489, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chen, Ying & Han, Qian & Niu, Linlin, 2018. "Forecasting the term structure of option implied volatility: The power of an adaptive method," Journal of Empirical Finance, Elsevier, vol. 49(C), pages 157-177.
    2. repec:hum:wpaper:sfb649dp2009-004 is not listed on IDEAS
    3. Chen, Ying & Niu, Linlin, 2014. "Adaptive dynamic Nelson–Siegel term structure model with applications," Journal of Econometrics, Elsevier, vol. 180(1), pages 98-115.
    4. Ying Chen & Bo Li & Linlin Niu, 2013. "A Local Vector Autoregressive Framework and its Applications to Multivariate Time Series Monitoring and Forecasting," Working Papers 2013-12-05, Wang Yanan Institute for Studies in Economics (WISE), Xiamen University.
    5. Kearney, Fearghal & Shang, Han Lin & Sheenan, Lisa, 2019. "Implied volatility surface predictability: The case of commodity markets," Journal of Banking & Finance, Elsevier, vol. 108(C).
    6. Plat, Richard, 2009. "Stochastic portfolio specific mortality and the quantification of mortality basis risk," Insurance: Mathematics and Economics, Elsevier, vol. 45(1), pages 123-132, August.
    7. Lily Y. Liu, 2017. "Estimating Loss Given Default from CDS under Weak Identification," Supervisory Research and Analysis Working Papers RPA 17-1, Federal Reserve Bank of Boston.
    8. Chiarella, Carl & Kang, Boda & Nikitopoulos, Christina Sklibosios & Tô, Thuy-Duong, 2013. "Humps in the volatility structure of the crude oil futures market: New evidence," Energy Economics, Elsevier, vol. 40(C), pages 989-1000.
    9. Sergio Zúñiga, 1999. "Modelos de Tasas de Interés en Chile: Una Revisión," Latin American Journal of Economics-formerly Cuadernos de Economía, Instituto de Economía. Pontificia Universidad Católica de Chile., vol. 36(108), pages 875-893.
    10. Detlefsen, Kai & Härdle, Wolfgang Karl, 2006. "Forecasting the term structure of variance swaps," SFB 649 Discussion Papers 2006-052, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
    11. Evangelos Salachas & Georgios P. Kouretas & Nikiforos T. Laopodis, 2024. "The term structure of interest rates and economic activity: Evidence from the COVID‐19 pandemic," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 43(4), pages 1018-1041, July.
    12. Dick Dijk & Siem Jan Koopman & Michel Wel & Jonathan H. Wright, 2014. "Forecasting interest rates with shifting endpoints," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 29(5), pages 693-712, August.
    13. Gary S. Anderson & Alena Audzeyeva, 2019. "A Coherent Framework for Predicting Emerging Market Credit Spreads with Support Vector Regression," Finance and Economics Discussion Series 2019-074, Board of Governors of the Federal Reserve System (U.S.).
    14. Norman R. Swanson & Weiqi Xiong, 2018. "Big data analytics in economics: What have we learned so far, and where should we go from here?," Canadian Journal of Economics/Revue canadienne d'économique, John Wiley & Sons, vol. 51(3), pages 695-746, August.
    15. João Frois Caldeira & Rangan Gupta & Muhammad Tahir Suleman & Hudson S. Torrent, 2021. "Forecasting the Term Structure of Interest Rates of the BRICS: Evidence from a Nonparametric Functional Data Analysis," Emerging Markets Finance and Trade, Taylor & Francis Journals, vol. 57(15), pages 4312-4329, December.
    16. Nguyen, Minh, 2020. "Collateral haircuts and bond yields in the European government bond markets," International Review of Financial Analysis, Elsevier, vol. 69(C).
    17. Adam Traczyk, 2013. "Financial integration and the term structure of interest rates," Empirical Economics, Springer, vol. 45(3), pages 1267-1305, December.
    18. John Y. Campbell & Glen B. Taksler, 2003. "Equity Volatility and Corporate Bond Yields," Journal of Finance, American Finance Association, vol. 58(6), pages 2321-2350, December.
    19. Chamon, Marcos & Schumacher, Julian & Trebesch, Christoph, 2018. "Foreign-Law Bonds: Can They Reduce Sovereign Borrowing Costs?," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 114, pages 164-179.
    20. Ang, Andrew & Piazzesi, Monika & Wei, Min, 2006. "What does the yield curve tell us about GDP growth?," Journal of Econometrics, Elsevier, vol. 131(1-2), pages 359-403.
    21. Shigenori Shiratsuka, 2021. "Monetary Policy Effectiveness under the Ultra-Low Interest Rate Environment: Evidence from Yield Curve Dynamics in Japan," Keio-IES Discussion Paper Series 2021-012, Institute for Economics Studies, Keio University.

    More about this item

    Keywords

    CDS spreads; bond spreads; default intensity; credit derivatives pricing; spread risk modelling; credit risk modelling; loan book valuation; CIR model;
    All these keywords.

    JEL classification:

    • C13 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Estimation: General
    • C20 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - General
    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:zbw:sfb649:sfb649dp2009-004. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ZBW - Leibniz Information Centre for Economics (email available below). General contact details of provider: https://edirc.repec.org/data/sohubde.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.