IDEAS home Printed from https://ideas.repec.org/p/zbw/sfb649/sfb649dp2009-002.html
   My bibliography  Save this paper

On the systemic nature of weather risk

Author

Listed:
  • Filler, Guenther
  • Odening, Martin
  • Okhrin, Ostap
  • Xu, Wei

Abstract

Systemic weather risk is a major obstacle for the formation of private (non- subsidized) crop insurance. This paper explores the possibility of spatial diversification of insurance by estimating the joint occurrence of unfavorable weather conditions in different locations. For that purpose copula methods are employed that allow an adequate description of stochastic dependencies between multivariate random variables. The estimation procedure is applied to weather data in Germany. Our results indicate that indemnity payments based on temperature as well as on cumulative rainfall show strong stochastic dependence even at a national scale. Thus the possibility to reduce risk exposure by increasing the trading area of the insurance is limited. Irrespective of their economic implications our results pinpoint the necessity of a proper statistical modeling of the dependence structure of multivariate random variables. The usual approach of measuring stochastic dependence with linear correlation coefficients turned out to be questionable in the context of weather insurance as it may overestimate diversification effects considerably.

Suggested Citation

  • Filler, Guenther & Odening, Martin & Okhrin, Ostap & Xu, Wei, 2009. "On the systemic nature of weather risk," SFB 649 Discussion Papers 2009-002, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
  • Handle: RePEc:zbw:sfb649:sfb649dp2009-002
    as

    Download full text from publisher

    File URL: https://www.econstor.eu/bitstream/10419/25318/1/590228501.PDF
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Vedenov, Dmitry V., 2008. "Application of Copulas to Estimation of Joint Crop Yield Distributions," 2008 Annual Meeting, July 27-29, 2008, Orlando, Florida 6264, American Agricultural Economics Association (New Name 2008: Agricultural and Applied Economics Association).
    2. Zhu, Ying & Ghosh, Sujit K. & Goodwin, Barry K., 2008. "Modeling Dependence in the Design of Whole Farm---A Copula-Based Model Approach," 2008 Annual Meeting, July 27-29, 2008, Orlando, Florida 6282, American Agricultural Economics Association (New Name 2008: Agricultural and Applied Economics Association).
    3. Joshua D. Woodard & Philip Garcia, 2008. "Basis risk and weather hedging effectiveness," Agricultural Finance Review, Emerald Group Publishing Limited, vol. 68(1), pages 99-117, May.
    4. Xu, Wei & Odening, Martin & Musshoff, Oliver, 2008. "Optimal Design of Weather Bonds," 2008 Annual Meeting, July 27-29, 2008, Orlando, Florida 6781, American Agricultural Economics Association (New Name 2008: Agricultural and Applied Economics Association).
    5. Giacomini, Enzo & Härdle, Wolfgang Karl, 2005. "Value-at-risk calculations with time varying copulae," SFB 649 Discussion Papers 2005-004, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
    6. Barry K. Goodwin, 2001. "Problems with Market Insurance in Agriculture," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 83(3), pages 643-649.
    7. Härdle, Wolfgang Karl & Okhrin, Ostap & Okhrin, Yarema, 2008. "Modeling dependencies in finance using copulae," SFB 649 Discussion Papers 2008-043, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
    8. Martin Odening & Oliver Musshoff & Wei Xu, 2007. "Analysis of rainfall derivatives using daily precipitation models: opportunities and pitfalls," Agricultural Finance Review, Emerald Group Publishing Limited, vol. 67(1), pages 135-156, May.
    9. World Bank, 2005. "Managing Agricultural Production Risk : Innovations in Developing Countries," World Bank Publications - Reports 14434, The World Bank Group.
    10. Mario J. Miranda & Joseph W. Glauber, 1997. "Systemic Risk, Reinsurance, and the Failure of Crop Insurance Markets," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 79(1), pages 206-215.
    11. Martin, Steven W. & Barnett, Barry J. & Coble, Keith H., 2001. "Developing And Pricing Precipitation Insurance," Journal of Agricultural and Resource Economics, Western Agricultural Economics Association, vol. 26(1), pages 1-14, July.
    12. H. Holly Wang & Hao Zhang, 2003. "On the Possibility of a Private Crop Insurance Market: A Spatial Statistics Approach," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 70(1), pages 111-124, March.
    13. Markus Junker & Angelika May, 2005. "Measurement of aggregate risk with copulas," Econometrics Journal, Royal Economic Society, vol. 8(3), pages 428-454, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. repec:hum:wpaper:sfb649dp2009-002 is not listed on IDEAS
    2. Ostap Okhrin & Martin Odening & Wei Xu, 2013. "Systemic Weather Risk and Crop Insurance: The Case of China," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 80(2), pages 351-372, June.
    3. Feng, Xiaoguang & Hayes, Dermot J., 2014. "Is Government Involvement Really Necessary: Implications for Systemic Risk and Crop Reinsurance Contracts," ISU General Staff Papers 201410010700001002, Iowa State University, Department of Economics.
    4. Zhiwei Shen & Martin Odening, 2013. "Coping with systemic risk in index-based crop insurance," Agricultural Economics, International Association of Agricultural Economists, vol. 44(1), pages 1-13, January.
    5. Zhiwei Shen & Martin Odening & Ostap Okhrin, 2016. "Can expert knowledge compensate for data scarcity in crop insurance pricing?," European Review of Agricultural Economics, Oxford University Press and the European Agricultural and Applied Economics Publications Foundation, vol. 43(2), pages 237-269.
    6. Xiaotao Li & Jinzheng Ren & Beibei Niu & Haiping Wu, 2020. "Grain Area Yield Index Insurance Ratemaking Based on Time–Space Risk Adjustment in China," Sustainability, MDPI, vol. 12(6), pages 1-15, March.
    7. Awondo, Sebastain N. & Shurley, Don W., 2017. "On the Efficiency of Pseudo Risk Pools and Proxy Yield Data on Crop Insurance and Reinsurance in U.S," 2017 Annual Meeting, July 30-August 1, Chicago, Illinois 258566, Agricultural and Applied Economics Association.
    8. Barnett, Barry J. & Barrett, Christopher B. & Skees, Jerry R., 2008. "Poverty Traps and Index-Based Risk Transfer Products," World Development, Elsevier, vol. 36(10), pages 1766-1785, October.
    9. Ming Wang & Tao Ye & Peijun Shi, 2016. "Factors Affecting Farmers’ Crop Insurance Participation in China," Canadian Journal of Agricultural Economics/Revue canadienne d'agroeconomie, Canadian Agricultural Economics Society/Societe canadienne d'agroeconomie, vol. 64(3), pages 479-492, September.
    10. Martínez-Salgueiro, Andrea & Tarrazón-Rodón, María-Antonia, 2020. "Is diversification effective in reducing the systemic risk implied by a market for weather index-based insurance in Spain?," MPRA Paper 119924, University Library of Munich, Germany, revised 19 May 2021.
    11. Vitor Ozaki, 2009. "Pricing farm-level agricultural insurance: a Bayesian approach," Empirical Economics, Springer, vol. 36(2), pages 231-242, May.
    12. Bokusheva, Raushan, 2010. "Measuring the dependence structure between yield and weather variables," MPRA Paper 22786, University Library of Munich, Germany.
    13. Songjiao Chen & William Wilson & Ryan Larsen & Bruce Dahl, 2016. "Risk Management for Grain Processors and “Copulas”," Canadian Journal of Agricultural Economics/Revue canadienne d'agroeconomie, Canadian Agricultural Economics Society/Societe canadienne d'agroeconomie, vol. 64(2), pages 365-382, June.
    14. Antoine Leblois & Philippe Quirion, 2013. "Agricultural insurances based on meteorological indices: realizations, methods and research challenges," Post-Print hal-00656778, HAL.
    15. Liu, X. & Xu, W. & Odening, M., 2011. "Lassen sich Ertragsrisiken in der Landwirtschaft global diversifizieren?," Proceedings “Schriften der Gesellschaft für Wirtschafts- und Sozialwissenschaften des Landbaues e.V.”, German Association of Agricultural Economists (GEWISOLA), vol. 46, March.
    16. Bhatti, M. Ishaq & Nguyen, Cuong C., 2012. "Diversification evidence from international equity markets using extreme values and stochastic copulas," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 22(3), pages 622-646.
    17. Željko Kokot & Todor Marković & Sanjin Ivanović & Maja Meseldžija, 2020. "Whole-Farm Revenue Protection as a Factor of Economic Stability in Crop Production," Sustainability, MDPI, vol. 12(16), pages 1-11, August.
    18. Juárez-Torres, Miriam & Sánchez-Aragón, Leonardo & Vedenov, Dmitry, 2017. "Weather Derivatives and Water Management in Developing Countries: An Application for an Irrigation District in Central Mexico," Journal of Agricultural and Resource Economics, Western Agricultural Economics Association, vol. 42(2), May.
    19. Kemeze, Francis H. & Miranda, Mario J. & Kuwornu, John & Amin-Somuah, Henry, 2016. "Optimal Management of Runoff Reservoir Supply: The Case of Tono Reservoir in Northern Ghana," 2016 Annual Meeting, July 31-August 2, Boston, Massachusetts 236030, Agricultural and Applied Economics Association.
    20. Bokusheva, Raushan & Breustedt, Gunnar & Heidelbach, Olaf, 2007. "Ex-ante evaluation of weather-based index insurance and area-yield insurance for reducing crop yield risk," 101st Seminar, July 5-6, 2007, Berlin Germany 9250, European Association of Agricultural Economists.
    21. Carter, Chris & Crean, Jason & Kingwell, Ross S. & Hertzler, Greg, 2006. "Managing and Sharing the Risks of Drought in Australia," 2006 Annual Meeting, August 12-18, 2006, Queensland, Australia 25319, International Association of Agricultural Economists.

    More about this item

    Keywords

    Weather risk; crop insurance; copula;
    All these keywords.

    JEL classification:

    • C14 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Semiparametric and Nonparametric Methods: General
    • Q19 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Agriculture - - - Other

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:zbw:sfb649:sfb649dp2009-002. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ZBW - Leibniz Information Centre for Economics (email available below). General contact details of provider: https://edirc.repec.org/data/sohubde.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.