IDEAS home Printed from https://ideas.repec.org/p/zbw/sfb649/sfb649dp2008-044.html
   My bibliography  Save this paper

Numerics of implied binomial trees

Author

Listed:
  • Härdle, Wolfgang Karl
  • Myšičková, Alena

Abstract

Market option prices in last 20 years confirmed deviations from the Black and Scholes (BS) models assumptions, especially on the BS implied volatility. Implied binomial trees (IBT) models capture the variations of the implied volatility known as volatility smile. They provide a discrete approximation to the continuous risk neutral process for the underlying assets. In this paper, we describe the numerical construction of IBTs by Derman and Kani (DK) and an alternative method by Barle and Cakici (BC). After the formation of IBT we can estimate the implied local volatility and the state price density (SPD). We compare the SPD estimated by the IBT methods with a conditional density computed from a simulated difusion process. In addition, we apply the IBT to EUREX option prices and compare the estimated SPDs. Both IBT methods coincide well with the estimation from the simulated process, though the BC method shows smaller deviations in case of high interest rate, particularly.

Suggested Citation

  • Härdle, Wolfgang Karl & Myšičková, Alena, 2008. "Numerics of implied binomial trees," SFB 649 Discussion Papers 2008-044, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
  • Handle: RePEc:zbw:sfb649:sfb649dp2008-044
    as

    Download full text from publisher

    File URL: https://www.econstor.eu/bitstream/10419/25284/1/571751105.PDF
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Yatchew, Adonis & Hardle, Wolfgang, 2006. "Nonparametric state price density estimation using constrained least squares and the bootstrap," Journal of Econometrics, Elsevier, vol. 133(2), pages 579-599, August.
    2. Fengler, Matthias R. & Härdle, Wolfgang & Mammen, Enno, 2003. "Implied volatility string dynamics," SFB 373 Discussion Papers 2003,54, Humboldt University of Berlin, Interdisciplinary Research Project 373: Quantification and Simulation of Economic Processes.
    3. Matthias Fengler & Wolfgang Härdle & Christophe Villa, 2003. "The Dynamics of Implied Volatilities: A Common Principal Components Approach," Review of Derivatives Research, Springer, vol. 6(3), pages 179-202, October.
    4. Muzzioli, S. & Torricelli, C., 2005. "The pricing of options on an interval binomial tree. An application to the DAX-index option market," European Journal of Operational Research, Elsevier, vol. 163(1), pages 192-200, May.
    5. Jackwerth, Jens Carsten & Rubinstein, Mark, 1996. "Recovering Probability Distributions from Option Prices," Journal of Finance, American Finance Association, vol. 51(5), pages 1611-1632, December.
    6. Jackwerth, Jens Carsten, 1999. "Option Implied Risk-Neutral Distributions and Implied Binomial Trees: A Literature Review," MPRA Paper 11634, University Library of Munich, Germany.
    7. Hui, Eddie Chi-man, 2006. "An enhanced implied tree model for option pricing: A study on Hong Kong property stock options," International Review of Economics & Finance, Elsevier, vol. 15(3), pages 324-345.
    8. Rubinstein, Mark, 1994. "Implied Binomial Trees," Journal of Finance, American Finance Association, vol. 49(3), pages 771-818, July.
    9. Mark Rubinstein., 1994. "Implied Binomial Trees," Research Program in Finance Working Papers RPF-232, University of California at Berkeley.
    10. Hull, John C & White, Alan D, 1987. "The Pricing of Options on Assets with Stochastic Volatilities," Journal of Finance, American Finance Association, vol. 42(2), pages 281-300, June.
    11. Cox, John C. & Ross, Stephen A. & Rubinstein, Mark, 1979. "Option pricing: A simplified approach," Journal of Financial Economics, Elsevier, vol. 7(3), pages 229-263, September.
    12. Kim, In Joon & Park, Gun Youb, 2006. "An empirical comparison of implied tree models for KOSPI 200 index options," International Review of Economics & Finance, Elsevier, vol. 15(1), pages 52-71.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jansen, Jeroen & Das, Sanjiv R. & Fabozzi, Frank J., 2018. "Local volatility and the recovery rate of credit default swaps," Journal of Economic Dynamics and Control, Elsevier, vol. 92(C), pages 1-29.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Elyas Elyasiani & Silvia Muzzioli & Alessio Ruggieri, 2016. "Forecasting and pricing powers of option-implied tree models: Tranquil and volatile market conditions," Department of Economics 0099, University of Modena and Reggio E., Faculty of Economics "Marco Biagi".
    2. Christoffersen, Peter & Jacobs, Kris & Chang, Bo Young, 2013. "Forecasting with Option-Implied Information," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 581-656, Elsevier.
    3. Seiji Harikae & James S. Dyer & Tianyang Wang, 2021. "Valuing Real Options in the Volatile Real World," Production and Operations Management, Production and Operations Management Society, vol. 30(1), pages 171-189, January.
    4. Wael Bahsoun & Pawel Góra & Silvia Mayoral & Manuel Morales, 2006. "Random Dynamics and Finance: Constructing Implied Binomial Trees from a Predetermined Stationary Den," Faculty Working Papers 13/06, School of Economics and Business Administration, University of Navarra.
    5. Lim, Terence & Lo, Andrew W. & Merton, Robert C. & Scholes, Myron S., 2006. "The Derivatives Sourcebook," Foundations and Trends(R) in Finance, now publishers, vol. 1(5–6), pages 365-572, April.
    6. Guidolin, Massimo & Timmermann, Allan, 2003. "Option prices under Bayesian learning: implied volatility dynamics and predictive densities," Journal of Economic Dynamics and Control, Elsevier, vol. 27(5), pages 717-769, March.
    7. Elyas Elyasiani & Luca Gambarelli & Silvia Muzzioli, 2015. "Towards a skewness index for the Italian stock market," Department of Economics 0064, University of Modena and Reggio E., Faculty of Economics "Marco Biagi".
    8. Kim, In Joon & Park, Gun Youb, 2006. "An empirical comparison of implied tree models for KOSPI 200 index options," International Review of Economics & Finance, Elsevier, vol. 15(1), pages 52-71.
    9. Alessandro Beber, 2001. "Determinants of the implied volatility function on the Italian Stock Market," LEM Papers Series 2001/05, Laboratory of Economics and Management (LEM), Sant'Anna School of Advanced Studies, Pisa, Italy.
    10. Broadie, Mark & Detemple, Jerome & Ghysels, Eric & Torres, Olivier, 2000. "American options with stochastic dividends and volatility: A nonparametric investigation," Journal of Econometrics, Elsevier, vol. 94(1-2), pages 53-92.
    11. Bernd Engelmann & Matthias Fengler & Morten Nalholm & Peter Schwendner, 2006. "Static versus dynamic hedges: an empirical comparison for barrier options," Review of Derivatives Research, Springer, vol. 9(3), pages 239-264, November.
    12. Bondarenko, Oleg, 2003. "Estimation of risk-neutral densities using positive convolution approximation," Journal of Econometrics, Elsevier, vol. 116(1-2), pages 85-112.
    13. Michel van der Wel & Sait R. Ozturk & Dick van Dijk, 2015. "Dynamic Factor Models for the Volatility Surface," CREATES Research Papers 2015-13, Department of Economics and Business Economics, Aarhus University.
    14. René Garcia & Eric Ghysels & Eric Renault, 2004. "The Econometrics of Option Pricing," CIRANO Working Papers 2004s-04, CIRANO.
    15. Chang, Eric C. & Ren, Jinjuan & Shi, Qi, 2009. "Effects of the volatility smile on exchange settlement practices: The Hong Kong case," Journal of Banking & Finance, Elsevier, vol. 33(1), pages 98-112, January.
    16. Semih Yon & Cafer Erhan Bozdag, 2014. "Test of Log-Normal Process with Importance Sampling for Options Pricing," Proceedings of Economics and Finance Conferences 0401571, International Institute of Social and Economic Sciences.
    17. Monteiro, Ana Margarida & Tutuncu, Reha H. & Vicente, Luis N., 2008. "Recovering risk-neutral probability density functions from options prices using cubic splines and ensuring nonnegativity," European Journal of Operational Research, Elsevier, vol. 187(2), pages 525-542, June.
    18. Jarno Talponen, 2013. "Matching distributions: Asset pricing with density shape correction," Papers 1312.4227, arXiv.org, revised Mar 2018.
    19. Joe Akira Yoshino, 2003. "Market Risk and Volatility in the Brazilian Stock Market," Journal of Applied Economics, Universidad del CEMA, vol. 6, pages 385-403, November.
    20. Shi-jie Jiang & Mujun Lei & Cheng-Huang Chung, 2018. "An Improvement of Gain-Loss Price Bounds on Options Based on Binomial Tree and Market-Implied Risk-Neutral Distribution," Sustainability, MDPI, vol. 10(6), pages 1-17, June.

    More about this item

    Keywords

    Implied tree models; implied olatility; local volatility; option pricing;
    All these keywords.

    JEL classification:

    • G12 - Financial Economics - - General Financial Markets - - - Asset Pricing; Trading Volume; Bond Interest Rates
    • G13 - Financial Economics - - General Financial Markets - - - Contingent Pricing; Futures Pricing
    • C13 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Estimation: General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:zbw:sfb649:sfb649dp2008-044. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ZBW - Leibniz Information Centre for Economics (email available below). General contact details of provider: https://edirc.repec.org/data/sohubde.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.