On {sigma}-additive robust representation of convex risk measures for unbounded financial positions in the presence of uncertainty about the market model
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Marco Frittelli & Giacomo Scandolo, 2006. "Risk Measures And Capital Requirements For Processes," Mathematical Finance, Wiley Blackwell, vol. 16(4), pages 589-612, October.
- Krätschmer, Volker, 2006. "Compactness in spaces of inner regular measures and a general Portmanteau lemma," SFB 649 Discussion Papers 2006-081, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
- Andrzej Ruszczynski & Alexander Shapiro, 2004. "Optimization of Convex Risk Functions," Risk and Insurance 0404001, University Library of Munich, Germany, revised 08 Oct 2005.
- Andrzej Ruszczyński & Alexander Shapiro, 2006.
"Optimization of Convex Risk Functions,"
Mathematics of Operations Research, INFORMS, vol. 31(3), pages 433-452, August.
- Andrzej Ruszczynski & Alexander Shapiro, 2004. "Optimization of Convex Risk Functions," Risk and Insurance 0404001, University Library of Munich, Germany, revised 08 Oct 2005.
- Riedel, Frank, 2004.
"Dynamic coherent risk measures,"
Stochastic Processes and their Applications, Elsevier, vol. 112(2), pages 185-200, August.
- Frank Riedel, 2003. "Dynamic Coherent Risk Measures," Working Papers 03004, Stanford University, Department of Economics.
- Philippe Artzner & Freddy Delbaen & Jean‐Marc Eber & David Heath, 1999. "Coherent Measures of Risk," Mathematical Finance, Wiley Blackwell, vol. 9(3), pages 203-228, July.
- Elyès Jouini & Walter Schachermayer & Nizar Touzi, 2006. "Law Invariant Risk Measures Have the Fatou Property," Post-Print halshs-00176522, HAL.
- repec:dau:papers:123456789/342 is not listed on IDEAS
- Stefan Weber, 2006. "Distribution‐Invariant Risk Measures, Information, And Dynamic Consistency," Mathematical Finance, Wiley Blackwell, vol. 16(2), pages 419-441, April.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Nicole EL KAROUI & Claudia RAVANELLI, 2008. "Cash Sub-additive Risk Measures and Interest Rate Ambiguity," Swiss Finance Institute Research Paper Series 08-09, Swiss Finance Institute.
- repec:hum:wpaper:sfb649dp2010-052 is not listed on IDEAS
- Belomestny, Denis & Krätschmer, Volker, 2010. "Central limit theorems for law-invariant coherent risk measures," SFB 649 Discussion Papers 2010-052, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- repec:hum:wpaper:sfb649dp2007-010 is not listed on IDEAS
- Tomasz R. Bielecki & Igor Cialenco & Marcin Pitera, 2014. "A unified approach to time consistency of dynamic risk measures and dynamic performance measures in discrete time," Papers 1409.7028, arXiv.org, revised Sep 2017.
- Christopher W. Miller & Insoon Yang, 2015. "Optimal Control of Conditional Value-at-Risk in Continuous Time," Papers 1512.05015, arXiv.org, revised Jan 2017.
- Kerem Ugurlu, 2014. "On the Coherent Risk Measure Representations in the Discrete Probability Spaces," Papers 1411.4441, arXiv.org, revised Dec 2014.
- Patrick Cheridito & Tianhui Li, 2009. "Risk Measures On Orlicz Hearts," Mathematical Finance, Wiley Blackwell, vol. 19(2), pages 189-214, April.
- Bellini, Fabio & Rosazza Gianin, Emanuela, 2008. "On Haezendonck risk measures," Journal of Banking & Finance, Elsevier, vol. 32(6), pages 986-994, June.
- Alois Pichler & Alexander Shapiro, 2012. "Uniqueness of Kusuoka Representations," Papers 1210.7257, arXiv.org, revised Feb 2013.
- Nicole EL KAROUI & Claudia RAVANELLI, 2008. "Cash Sub-additive Risk Measures and Interest Rate Ambiguity," Swiss Finance Institute Research Paper Series 08-09, Swiss Finance Institute.
- Alexander S. Cherny, 2009. "Capital Allocation And Risk Contribution With Discrete‐Time Coherent Risk," Mathematical Finance, Wiley Blackwell, vol. 19(1), pages 13-40, January.
- Andreas H Hamel, 2018. "Monetary Measures of Risk," Papers 1812.04354, arXiv.org.
- Daniel Lacker, 2015. "Law invariant risk measures and information divergences," Papers 1510.07030, arXiv.org, revised Jun 2016.
- Pospisil, Libor & Vecer, Jan & Xu, Mingxin, 2007. "Tradable measure of risk," MPRA Paper 5059, University Library of Munich, Germany.
- Laeven, R.J.A. & Stadje, M.A., 2011.
"Entropy Coherent and Entropy Convex Measures of Risk,"
Discussion Paper
2011-031, Tilburg University, Center for Economic Research.
- Laeven, R.J.A. & Stadje, M.A., 2011. "Entropy Coherent and Entropy Convex Measures of Risk," Other publications TiSEM 08f59c7c-7302-47f9-9a9b-b, Tilburg University, School of Economics and Management.
- Roorda, Berend & Schumacher, J.M., 2007. "Time consistency conditions for acceptability measures, with an application to Tail Value at Risk," Insurance: Mathematics and Economics, Elsevier, vol. 40(2), pages 209-230, March.
- Sıtkı Gülten & Andrzej Ruszczyński, 2015. "Two-stage portfolio optimization with higher-order conditional measures of risk," Annals of Operations Research, Springer, vol. 229(1), pages 409-427, June.
- Stadje, Mitja, 2010. "Extending dynamic convex risk measures from discrete time to continuous time: A convergence approach," Insurance: Mathematics and Economics, Elsevier, vol. 47(3), pages 391-404, December.
- Kovacevic Raimund M., 2012. "Conditional risk and acceptability mappings as Banach-lattice valued mappings," Statistics & Risk Modeling, De Gruyter, vol. 29(1), pages 1-18, March.
- Ricardo Collado & Dávid Papp & Andrzej Ruszczyński, 2012. "Scenario decomposition of risk-averse multistage stochastic programming problems," Annals of Operations Research, Springer, vol. 200(1), pages 147-170, November.
- Shapiro, Alexander, 2012. "Minimax and risk averse multistage stochastic programming," European Journal of Operational Research, Elsevier, vol. 219(3), pages 719-726.
- Beatrice Acciaio & Irina Penner, 2010. "Dynamic risk measures," Papers 1002.3794, arXiv.org.
- Beatrice Acciaio & Hans Foellmer & Irina Penner, 2010. "Risk assessment for uncertain cash flows: Model ambiguity, discounting ambiguity, and the role of bubbles," Papers 1002.3627, arXiv.org.
More about this item
JEL classification:
- G10 - Financial Economics - - General Financial Markets - - - General (includes Measurement and Data)
NEP fields
This paper has been announced in the following NEP Reports:- NEP-RMG-2007-03-10 (Risk Management)
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:zbw:sfb649:sfb649dp2007-010. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ZBW - Leibniz Information Centre for Economics (email available below). General contact details of provider: https://edirc.repec.org/data/sohubde.html .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.