IDEAS home Printed from https://ideas.repec.org/p/zbw/sfb475/200522.html
   My bibliography  Save this paper

Optimal Discrimination Designs for Exponential Regression Models

Author

Listed:
  • Biedermann, Stefanie
  • Dette, Holger
  • Pepelyshev, Andrey

Abstract

We investigate optimal designs for discriminating between exponential regression models of different complexity, which are widely used in the biological sciences; see, e.g., Landaw (1995) or Gibaldi and Perrier (1982). We discuss different approaches for the construction of appropriate optimality criteria, and find sharper upper bounds on the number of support points of locally optimal discrimination designs than those given by Caratheodory?s Theorem. These results greatly facilitate the numerical construction of optimal designs. Various examples of optimal designs are then presented and compared to different other designs. Moreover, to protect the experiment against misspecifications of the nonlinear model parameters, we adapt the design criteria such that the resulting designs are robust with respect to such misspecifications and, again, provide several examples, which demonstrate the advantages of our approach.

Suggested Citation

  • Biedermann, Stefanie & Dette, Holger & Pepelyshev, Andrey, 2005. "Optimal Discrimination Designs for Exponential Regression Models," Technical Reports 2005,22, Technische Universität Dortmund, Sonderforschungsbereich 475: Komplexitätsreduktion in multivariaten Datenstrukturen.
  • Handle: RePEc:zbw:sfb475:200522
    as

    Download full text from publisher

    File URL: https://www.econstor.eu/bitstream/10419/22636/1/tr22-05.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Wong, Weng Kee & Melas, Viatcheslav B. & Dette, Holger, 2004. "Optimal design for goodness-of-fit of the Michaelis-Menten enzyme kinetic function," Technical Reports 2004,24, Technische Universität Dortmund, Sonderforschungsbereich 475: Komplexitätsreduktion in multivariaten Datenstrukturen.
    2. Holger Dette, 1997. "Designing Experiments with Respect to ‘Standardized’ Optimality Criteria," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 59(1), pages 97-110.
    3. Dette, Holger & Biedermann, Stefanie, 2003. "Robust and Efficient Designs for the Michaelis-Menten Model," Journal of the American Statistical Association, American Statistical Association, vol. 98, pages 679-686, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dette, Holger & Pepelyshev, Andrey, 2005. "Efficient experimental designs for sigmoidal growth models," Technical Reports 2005,13, Technische Universität Dortmund, Sonderforschungsbereich 475: Komplexitätsreduktion in multivariaten Datenstrukturen.
    2. Lenka Filová & Mária Trnovská & Radoslav Harman, 2012. "Computing maximin efficient experimental designs using the methods of semidefinite programming," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 75(5), pages 709-719, July.
    3. Pepelyshev, Andrey & Melas, Viatcheslav B. & Strigul, Nikolay & Dette, Holger, 2004. "Design of experiments for the Monod model : robust and efficient designs," Technical Reports 2004,36, Technische Universität Dortmund, Sonderforschungsbereich 475: Komplexitätsreduktion in multivariaten Datenstrukturen.
    4. Chiara Tommasi & Juan M. Rodríguez-Díaz & Jesús F. López-Fidalgo, 2023. "An equivalence theorem for design optimality with respect to a multi-objective criterion," Statistical Papers, Springer, vol. 64(4), pages 1041-1056, August.
    5. Braess, Dietrich & Dette, Holger, 2004. "On the number of support points of maximin and Bayesian D-optimal designs in nonlinear regression models," Technical Reports 2004,78, Technische Universität Dortmund, Sonderforschungsbereich 475: Komplexitätsreduktion in multivariaten Datenstrukturen.
    6. Wong, Weng Kee & Melas, Viatcheslav B. & Dette, Holger, 2004. "Optimal design for goodness-of-fit of the Michaelis-Menten enzyme kinetic function," Technical Reports 2004,24, Technische Universität Dortmund, Sonderforschungsbereich 475: Komplexitätsreduktion in multivariaten Datenstrukturen.
    7. Dette, Holger & Biedermann, Stefanie & Pepelyshev, Andrey, 2004. "Some robust design strategies for percentile estimation in binary response models," Technical Reports 2004,19, Technische Universität Dortmund, Sonderforschungsbereich 475: Komplexitätsreduktion in multivariaten Datenstrukturen.
    8. Lei He & Rong-Xian Yue, 2022. "$$I_L$$ I L -optimal designs for regression models under the second-order least squares estimator," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 85(1), pages 53-66, January.
    9. Masoudi, Ehsan & Holling, Heinz & Wong, Weng Kee, 2017. "Application of imperialist competitive algorithm to find minimax and standardized maximin optimal designs," Computational Statistics & Data Analysis, Elsevier, vol. 113(C), pages 330-345.
    10. Dennis Schmidt & Rainer Schwabe, 2015. "On optimal designs for censored data," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 78(3), pages 237-257, April.
    11. Dette, Holger & Kiss, Christine, 2007. "Optimal experimental designs for inverse quadratic regression models," Technical Reports 2007,37, Technische Universität Dortmund, Sonderforschungsbereich 475: Komplexitätsreduktion in multivariaten Datenstrukturen.
    12. Lei He & Rong-Xian Yue, 2020. "R-optimal designs for trigonometric regression models," Statistical Papers, Springer, vol. 61(5), pages 1997-2013, October.
    13. Dette, Holger & O'Brien, Timothy E., 2003. "Efficient experimental design for the Behrens-Fisher problem with application to bioassay," Technical Reports 2003,21, Technische Universität Dortmund, Sonderforschungsbereich 475: Komplexitätsreduktion in multivariaten Datenstrukturen.
    14. Harman, Radoslav & Jurík, Tomás, 2008. "Computing c-optimal experimental designs using the simplex method of linear programming," Computational Statistics & Data Analysis, Elsevier, vol. 53(2), pages 247-254, December.
    15. Hertel, Ida & Kohler, Michael, 2013. "Estimation of the optimal design of a nonlinear parametric regression problem via Monte Carlo experiments," Computational Statistics & Data Analysis, Elsevier, vol. 59(C), pages 1-12.
    16. Dette, Holger & Martinez Lopez, Ignacio & Ortiz Rodriguez, Isabel M. & Pepelyshev, Andrey, 2004. "Efficient design of experiment for exponential regression models," Technical Reports 2004,08, Technische Universität Dortmund, Sonderforschungsbereich 475: Komplexitätsreduktion in multivariaten Datenstrukturen.
    17. Dette, Holger & Melas, Viatcheslav B. & Pepelyshev, Andrey, 2006. "Optimal designs for free knot least squares splines," Technical Reports 2006,34, Technische Universität Dortmund, Sonderforschungsbereich 475: Komplexitätsreduktion in multivariaten Datenstrukturen.
    18. Husain, Bushra & Aslam, Fariha, 2024. "Weighted Simplex Centroid Mixture Experiments for third order Becker’s models: The R-optimal approach," Statistics & Probability Letters, Elsevier, vol. 213(C).
    19. Li, Guanghui & Zhang, Chongqi, 2017. "The pseudo component transformation design for experiment with mixture," Statistics & Probability Letters, Elsevier, vol. 131(C), pages 19-24.
    20. Lopez-Fidalgo, Jesus & Tommasi, Chiara, 2004. "Construction of MV- and SMV-optimum designs for binary response models," Computational Statistics & Data Analysis, Elsevier, vol. 44(3), pages 465-475, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:zbw:sfb475:200522. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ZBW - Leibniz Information Centre for Economics (email available below). General contact details of provider: https://edirc.repec.org/data/isdorde.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.