IDEAS home Printed from https://ideas.repec.org/p/zbw/sfb475/200737.html
   My bibliography  Save this paper

Optimal experimental designs for inverse quadratic regression models

Author

Listed:
  • Dette, Holger
  • Kiss, Christine

Abstract

In this paper optimal experimental designs for inverse quadratic regression models are determined. We consider two dfferent parameterizations of the model and investigate local optimal designs with respect to the c-, D-and E-criteria, which reflect various aspects of the precision of the maximum likelihood estimator for the parameters in inverse quadratic regression models. In particular it is demonstrated that for a sufficiently large design space geometric allocation rules are optimal with respect to many optimality criteria. Moreover, in numerous cases the designs with respect to the different criteria are supported at the same points. Finally, the effiiencies of different optimal designs with respect to various optimality criteria are studied, and the effiiency of some commonly used designs are investigated.

Suggested Citation

  • Dette, Holger & Kiss, Christine, 2007. "Optimal experimental designs for inverse quadratic regression models," Technical Reports 2007,37, Technische Universität Dortmund, Sonderforschungsbereich 475: Komplexitätsreduktion in multivariaten Datenstrukturen.
  • Handle: RePEc:zbw:sfb475:200737
    as

    Download full text from publisher

    File URL: https://www.econstor.eu/bitstream/10419/36604/1/600047172.PDF
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Dette, Holger & Biedermann, Stefanie, 2003. "Robust and Efficient Designs for the Michaelis-Menten Model," Journal of the American Statistical Association, American Statistical Association, vol. 98, pages 679-686, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lenka Filová & Mária Trnovská & Radoslav Harman, 2012. "Computing maximin efficient experimental designs using the methods of semidefinite programming," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 75(5), pages 709-719, July.
    2. Pepelyshev, Andrey & Melas, Viatcheslav B. & Strigul, Nikolay & Dette, Holger, 2004. "Design of experiments for the Monod model : robust and efficient designs," Technical Reports 2004,36, Technische Universität Dortmund, Sonderforschungsbereich 475: Komplexitätsreduktion in multivariaten Datenstrukturen.
    3. Chiara Tommasi & Juan M. Rodríguez-Díaz & Jesús F. López-Fidalgo, 2023. "An equivalence theorem for design optimality with respect to a multi-objective criterion," Statistical Papers, Springer, vol. 64(4), pages 1041-1056, August.
    4. Braess, Dietrich & Dette, Holger, 2004. "On the number of support points of maximin and Bayesian D-optimal designs in nonlinear regression models," Technical Reports 2004,78, Technische Universität Dortmund, Sonderforschungsbereich 475: Komplexitätsreduktion in multivariaten Datenstrukturen.
    5. Wong, Weng Kee & Melas, Viatcheslav B. & Dette, Holger, 2004. "Optimal design for goodness-of-fit of the Michaelis-Menten enzyme kinetic function," Technical Reports 2004,24, Technische Universität Dortmund, Sonderforschungsbereich 475: Komplexitätsreduktion in multivariaten Datenstrukturen.
    6. Lo Huang, Mong-Na & Lin, Chun-Sui, 2006. "Minimax and maximin efficient designs for estimating the location-shift parameter of parallel models with dual responses," Journal of Multivariate Analysis, Elsevier, vol. 97(1), pages 198-210, January.
    7. Dette, Holger & Biedermann, Stefanie & Pepelyshev, Andrey, 2004. "Some robust design strategies for percentile estimation in binary response models," Technical Reports 2004,19, Technische Universität Dortmund, Sonderforschungsbereich 475: Komplexitätsreduktion in multivariaten Datenstrukturen.
    8. Sheng Wu & Weng Kee Wong & Catherine M. Crespi, 2017. "Maximin optimal designs for cluster randomized trials," Biometrics, The International Biometric Society, vol. 73(3), pages 916-926, September.
    9. Dette, Holger & Kiss , Christine & Wong, Weng Kee, 2008. "Robustness of optimal designs for the Michaelis-Menten model under a variation of criteria," Technical Reports 2008,23, Technische Universität Dortmund, Sonderforschungsbereich 475: Komplexitätsreduktion in multivariaten Datenstrukturen.
    10. Biedermann, Stefanie & Dette, Holger & Pepelyshev, Andrey, 2005. "Optimal Discrimination Designs for Exponential Regression Models," Technical Reports 2005,22, Technische Universität Dortmund, Sonderforschungsbereich 475: Komplexitätsreduktion in multivariaten Datenstrukturen.
    11. Lei He & Rong-Xian Yue, 2022. "$$I_L$$ I L -optimal designs for regression models under the second-order least squares estimator," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 85(1), pages 53-66, January.
    12. Dette, Holger & Pepelyshev, Andrey, 2005. "Efficient experimental designs for sigmoidal growth models," Technical Reports 2005,13, Technische Universität Dortmund, Sonderforschungsbereich 475: Komplexitätsreduktion in multivariaten Datenstrukturen.
    13. Masoudi, Ehsan & Holling, Heinz & Wong, Weng Kee, 2017. "Application of imperialist competitive algorithm to find minimax and standardized maximin optimal designs," Computational Statistics & Data Analysis, Elsevier, vol. 113(C), pages 330-345.
    14. Nadja Malevich & Christine H. Müller, 2019. "Optimal design of inspection times for interval censoring," Statistical Papers, Springer, vol. 60(2), pages 449-464, April.
    15. Yuanzhi Huang & Steven G. Gilmour & Kalliopi Mylona & Peter Goos, 2020. "Optimal Design of Experiments for Hybrid Nonlinear Models, with Applications to Extended Michaelis–Menten Kinetics," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 25(4), pages 601-616, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:zbw:sfb475:200737. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ZBW - Leibniz Information Centre for Economics (email available below). General contact details of provider: https://edirc.repec.org/data/isdorde.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.