IDEAS home Printed from https://ideas.repec.org/p/zbw/sfb475/200473.html
   My bibliography  Save this paper

Desirability to characterize process capability

Author

Listed:
  • Jessenberger, J.
  • Weihs, Claus

Abstract

Over the past few years continuously new process capability indices have been developed, most of them with the aim to add some feature missed in former process capability indices. Thus, for nearly any thinkable situation now a special index exists which makes choosing a certain index as difficult as interpreting and comparing index values correctly. In this paper we propose the use of the expected value of a certain type of function, the so-called desirability function, to assess the capability of a process. The resulting index may be used analogously to the classical indices related to Cp, but can be adapted to nearly any process and any specification. It even allows a comparison between different processes regardless of their distribution and may be extended straightforwardly to multivariate scenarios. Furthermore, its properties compare favorably to the properties of the ?classical? indices.

Suggested Citation

  • Jessenberger, J. & Weihs, Claus, 2004. "Desirability to characterize process capability," Technical Reports 2004,73, Technische Universität Dortmund, Sonderforschungsbereich 475: Komplexitätsreduktion in multivariaten Datenstrukturen.
  • Handle: RePEc:zbw:sfb475:200473
    as

    Download full text from publisher

    File URL: https://www.econstor.eu/bitstream/10419/22586/1/tr73-04.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Kwang‐Jae Kim & Dennis K. J. Lin, 2000. "Simultaneous optimization of mechanical properties of steel by maximizing exponential desirability functions," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 49(3), pages 311-325.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bera, Sasadhar & Mukherjee, Indrajit, 2016. "A multistage and multiple response optimization approach for serial manufacturing system," European Journal of Operational Research, Elsevier, vol. 248(2), pages 444-452.
    2. Paul L. Goethals & Natalie M. Scala, 2018. "Eliminating the Weakest Link Approach to Army Unit Readiness," Decision Analysis, INFORMS, vol. 15(2), pages 110-130, June.
    3. Bera, Sasadhar & Mukherjee, Indrajit, 2012. "An ellipsoidal distance-based search strategy of ants for nonlinear single and multiple response optimization problems," European Journal of Operational Research, Elsevier, vol. 223(2), pages 321-332.
    4. Kazemzadeh, Reza B. & Bashiri, Mahdi & Atkinson, Anthony C. & Noorossana, Rassoul, 2008. "A general framework for multiresponse optimization problems based on goal programming," European Journal of Operational Research, Elsevier, vol. 189(2), pages 421-429, September.
    5. Chiang, Tai-Lin & Su, Chao-Ton, 2003. "Optimization of TQFP molding process using neuro-fuzzy-GA approach," European Journal of Operational Research, Elsevier, vol. 147(1), pages 156-164, May.
    6. Jeong, In-Jun & Kim, Kwang-Jae, 2009. "An interactive desirability function method to multiresponse optimization," European Journal of Operational Research, Elsevier, vol. 195(2), pages 412-426, June.
    7. Riva, Lorenzo & Nielsen, Henrik Kofoed & Skreiberg, Øyvind & Wang, Liang & Bartocci, Pietro & Barbanera, Marco & Bidini, Gianni & Fantozzi, Francesco, 2019. "Analysis of optimal temperature, pressure and binder quantity for the production of biocarbon pellet to be used as a substitute for coke," Applied Energy, Elsevier, vol. 256(C).
    8. Zhen He & Jing Wang & Jinho Oh & Sung H. Park, 2010. "Robust optimization for multiple responses using response surface methodology," Applied Stochastic Models in Business and Industry, John Wiley & Sons, vol. 26(2), pages 157-171, March.
    9. Murat Köksalan & Robert D. Plante, 2003. "Interactive Multicriteria Optimization for Multiple-Response Product and Process Design," Manufacturing & Service Operations Management, INFORMS, vol. 5(4), pages 334-347, May.
    10. Abbas Al-Refaie & Wafa’a Al-Alaween & Ali Diabat & Ming-Hsien Li, 2017. "Solving dynamic systems with multi-responses by integrating desirability function and data envelopment analysis," Journal of Intelligent Manufacturing, Springer, vol. 28(2), pages 387-403, February.
    11. Chao-Ton Su & Mu-Chen Chen & Hsiao-Ling Chan, 2005. "Applying neural network and scatter search to optimize parameter design with dynamic characteristics," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 56(10), pages 1132-1140, October.
    12. Hsiu-Wen Chen & Weng Kee Wong & Hongquan Xu, 2012. "An augmented approach to the desirability function," Journal of Applied Statistics, Taylor & Francis Journals, vol. 39(3), pages 599-613, July.
    13. Hsu, Chih-Ming, 2004. "An integrated approach to enhance the optical performance of couplers based on neural networks, desirability functions and tabu search," International Journal of Production Economics, Elsevier, vol. 92(3), pages 241-254, December.
    14. Mouhamadou Mansour Mbow & Christelle Grandvallet & Frederic Vignat & Philippe Rene Marin & Nicolas Perry & Franck Pourroy, 2022. "Mathematization of experts knowledge: example of part orientation in additive manufacturing," Journal of Intelligent Manufacturing, Springer, vol. 33(5), pages 1209-1227, June.
    15. Shi, Liangxing & Lin, Dennis K.J. & Peterson, John J., 2016. "A confidence region for the ridge path in multiple response surface optimization," European Journal of Operational Research, Elsevier, vol. 252(3), pages 829-836.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:zbw:sfb475:200473. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ZBW - Leibniz Information Centre for Economics (email available below). General contact details of provider: https://edirc.repec.org/data/isdorde.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.