IDEAS home Printed from https://ideas.repec.org/a/wly/apsmbi/v26y2010i2p157-171.html
   My bibliography  Save this article

Robust optimization for multiple responses using response surface methodology

Author

Listed:
  • Zhen He
  • Jing Wang
  • Jinho Oh
  • Sung H. Park

Abstract

Typically in the analysis of industrial data for product/process optimization, there are many response variables that are under investigation at the same time. Robustness is also an important concept in industrial optimization. Here, robustness means that the responses are not sensitive to the small changes of the input variables. However, most of the recent work in industrial optimization has not dealt with robustness, and most practitioners follow up optimization calculations without consideration for robustness. This paper presents a strategy for dealing with robustness and optimization simultaneously for multiple responses. In this paper, we propose a robustness desirability function distinguished from the optimization desirability function and also propose an overall desirability function approach, which makes balance between robustness and optimization for multiple response problems. Simplex search method is used to search for the most robust optimal point in the feasible operating region. Finally, the proposed strategy is illustrated with an example from the literature. Copyright © 2009 John Wiley & Sons, Ltd.

Suggested Citation

  • Zhen He & Jing Wang & Jinho Oh & Sung H. Park, 2010. "Robust optimization for multiple responses using response surface methodology," Applied Stochastic Models in Business and Industry, John Wiley & Sons, vol. 26(2), pages 157-171, March.
  • Handle: RePEc:wly:apsmbi:v:26:y:2010:i:2:p:157-171
    DOI: 10.1002/asmb.788
    as

    Download full text from publisher

    File URL: https://doi.org/10.1002/asmb.788
    Download Restriction: no

    File URL: https://libkey.io/10.1002/asmb.788?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Kwang‐Jae Kim & Dennis K. J. Lin, 2000. "Simultaneous optimization of mechanical properties of steel by maximizing exponential desirability functions," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 49(3), pages 311-325.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ouyang, Linhan & Ma, Yizhong & Wang, Jianjun & Tu, Yiliu, 2017. "A new loss function for multi-response optimization with model parameter uncertainty and implementation errors," European Journal of Operational Research, Elsevier, vol. 258(2), pages 552-563.
    2. Wang, Jianjun & Ma, Yizhong & Ouyang, Linhan & Tu, Yiliu, 2016. "A new Bayesian approach to multi-response surface optimization integrating loss function with posterior probability," European Journal of Operational Research, Elsevier, vol. 249(1), pages 231-237.
    3. Hejazi, Taha-Hossein & Badri, Hossein & Yang, Kai, 2019. "A Reliability-based Approach for Performance Optimization of Service Industries: An Application to Healthcare Systems," European Journal of Operational Research, Elsevier, vol. 273(3), pages 1016-1025.
    4. He, Zhen & Zhu, Peng-Fei & Park, Sung-Hyun, 2012. "A robust desirability function method for multi-response surface optimization considering model uncertainty," European Journal of Operational Research, Elsevier, vol. 221(1), pages 241-247.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bera, Sasadhar & Mukherjee, Indrajit, 2016. "A multistage and multiple response optimization approach for serial manufacturing system," European Journal of Operational Research, Elsevier, vol. 248(2), pages 444-452.
    2. Paul L. Goethals & Natalie M. Scala, 2018. "Eliminating the Weakest Link Approach to Army Unit Readiness," Decision Analysis, INFORMS, vol. 15(2), pages 110-130, June.
    3. Bera, Sasadhar & Mukherjee, Indrajit, 2012. "An ellipsoidal distance-based search strategy of ants for nonlinear single and multiple response optimization problems," European Journal of Operational Research, Elsevier, vol. 223(2), pages 321-332.
    4. Kazemzadeh, Reza B. & Bashiri, Mahdi & Atkinson, Anthony C. & Noorossana, Rassoul, 2008. "A general framework for multiresponse optimization problems based on goal programming," European Journal of Operational Research, Elsevier, vol. 189(2), pages 421-429, September.
    5. Chiang, Tai-Lin & Su, Chao-Ton, 2003. "Optimization of TQFP molding process using neuro-fuzzy-GA approach," European Journal of Operational Research, Elsevier, vol. 147(1), pages 156-164, May.
    6. Jeong, In-Jun & Kim, Kwang-Jae, 2009. "An interactive desirability function method to multiresponse optimization," European Journal of Operational Research, Elsevier, vol. 195(2), pages 412-426, June.
    7. Riva, Lorenzo & Nielsen, Henrik Kofoed & Skreiberg, Øyvind & Wang, Liang & Bartocci, Pietro & Barbanera, Marco & Bidini, Gianni & Fantozzi, Francesco, 2019. "Analysis of optimal temperature, pressure and binder quantity for the production of biocarbon pellet to be used as a substitute for coke," Applied Energy, Elsevier, vol. 256(C).
    8. Jessenberger, J. & Weihs, Claus, 2004. "Desirability to characterize process capability," Technical Reports 2004,73, Technische Universität Dortmund, Sonderforschungsbereich 475: Komplexitätsreduktion in multivariaten Datenstrukturen.
    9. Murat Köksalan & Robert D. Plante, 2003. "Interactive Multicriteria Optimization for Multiple-Response Product and Process Design," Manufacturing & Service Operations Management, INFORMS, vol. 5(4), pages 334-347, May.
    10. Abbas Al-Refaie & Wafa’a Al-Alaween & Ali Diabat & Ming-Hsien Li, 2017. "Solving dynamic systems with multi-responses by integrating desirability function and data envelopment analysis," Journal of Intelligent Manufacturing, Springer, vol. 28(2), pages 387-403, February.
    11. Chao-Ton Su & Mu-Chen Chen & Hsiao-Ling Chan, 2005. "Applying neural network and scatter search to optimize parameter design with dynamic characteristics," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 56(10), pages 1132-1140, October.
    12. Hsiu-Wen Chen & Weng Kee Wong & Hongquan Xu, 2012. "An augmented approach to the desirability function," Journal of Applied Statistics, Taylor & Francis Journals, vol. 39(3), pages 599-613, July.
    13. Hsu, Chih-Ming, 2004. "An integrated approach to enhance the optical performance of couplers based on neural networks, desirability functions and tabu search," International Journal of Production Economics, Elsevier, vol. 92(3), pages 241-254, December.
    14. Mouhamadou Mansour Mbow & Christelle Grandvallet & Frederic Vignat & Philippe Rene Marin & Nicolas Perry & Franck Pourroy, 2022. "Mathematization of experts knowledge: example of part orientation in additive manufacturing," Journal of Intelligent Manufacturing, Springer, vol. 33(5), pages 1209-1227, June.
    15. Shi, Liangxing & Lin, Dennis K.J. & Peterson, John J., 2016. "A confidence region for the ridge path in multiple response surface optimization," European Journal of Operational Research, Elsevier, vol. 252(3), pages 829-836.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:apsmbi:v:26:y:2010:i:2:p:157-171. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://doi.org/10.1002/(ISSN)1526-4025 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.