Optimal designs for dose-response models with restricted design spaces
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Anthony Y. C. Kuk, 2004. "A litter‐based approach to risk assessment in developmental toxicity studies via a power family of completely monotone functions," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 53(2), pages 369-386, April.
- Holger Dette, 1997. "Designing Experiments with Respect to ‘Standardized’ Optimality Criteria," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 59(1), pages 97-110.
- Linda M. Haines & Inna Perevozskaya & William F. Rosenberger, 2003. "Bayesian Optimal Designs for Phase I Clinical Trials," Biometrics, The International Biometric Society, vol. 59(3), pages 591-600, September.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Dette, Holger & Biedermann, Stefanie & Zhu, Wei, 2005. "Compound Optimal Designs for Percentile Estimation in Dose-Response Models with Restricted Design Intervals," Technical Reports 2005,02, Technische Universität Dortmund, Sonderforschungsbereich 475: Komplexitätsreduktion in multivariaten Datenstrukturen.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Dette, Holger & Biedermann, Stefanie & Zhu, Wei, 2005. "Geometric construction of optimal designs for dose-responsemodels with two parameters," Technical Reports 2005,08, Technische Universität Dortmund, Sonderforschungsbereich 475: Komplexitätsreduktion in multivariaten Datenstrukturen.
- Dette, Holger & Biedermann, Stefanie & Zhu, Wei, 2005. "Compound Optimal Designs for Percentile Estimation in Dose-Response Models with Restricted Design Intervals," Technical Reports 2005,02, Technische Universität Dortmund, Sonderforschungsbereich 475: Komplexitätsreduktion in multivariaten Datenstrukturen.
- Kolossiatis, M. & Griffin, J.E. & Steel, M.F.J., 2011. "Modeling overdispersion with the normalized tempered stable distribution," Computational Statistics & Data Analysis, Elsevier, vol. 55(7), pages 2288-2301, July.
- Dennis Schmidt & Rainer Schwabe, 2015. "On optimal designs for censored data," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 78(3), pages 237-257, April.
- Lenka Filová & Mária Trnovská & Radoslav Harman, 2012. "Computing maximin efficient experimental designs using the methods of semidefinite programming," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 75(5), pages 709-719, July.
- Pepelyshev, Andrey & Melas, Viatcheslav B. & Strigul, Nikolay & Dette, Holger, 2004. "Design of experiments for the Monod model : robust and efficient designs," Technical Reports 2004,36, Technische Universität Dortmund, Sonderforschungsbereich 475: Komplexitätsreduktion in multivariaten Datenstrukturen.
- Lei He & Rong-Xian Yue, 2020. "R-optimal designs for trigonometric regression models," Statistical Papers, Springer, vol. 61(5), pages 1997-2013, October.
- Dette, Holger & O'Brien, Timothy E., 2003. "Efficient experimental design for the Behrens-Fisher problem with application to bioassay," Technical Reports 2003,21, Technische Universität Dortmund, Sonderforschungsbereich 475: Komplexitätsreduktion in multivariaten Datenstrukturen.
- Daniel R. Cavagnaro & Richard Gonzalez & Jay I. Myung & Mark A. Pitt, 2013. "Optimal Decision Stimuli for Risky Choice Experiments: An Adaptive Approach," Management Science, INFORMS, vol. 59(2), pages 358-375, February.
- Harman, Radoslav & Jurík, Tomás, 2008. "Computing c-optimal experimental designs using the simplex method of linear programming," Computational Statistics & Data Analysis, Elsevier, vol. 53(2), pages 247-254, December.
- Azriel, David, 2014. "Optimal sequential designs in phase I studies," Computational Statistics & Data Analysis, Elsevier, vol. 71(C), pages 288-297.
- Hertel, Ida & Kohler, Michael, 2013. "Estimation of the optimal design of a nonlinear parametric regression problem via Monte Carlo experiments," Computational Statistics & Data Analysis, Elsevier, vol. 59(C), pages 1-12.
- Yu, Chang & Zelterman, Daniel, 2008. "Sums of exchangeable Bernoulli random variables for family and litter frequency data," Computational Statistics & Data Analysis, Elsevier, vol. 52(3), pages 1636-1649, January.
- Chiara Tommasi & Juan M. Rodríguez-Díaz & Jesús F. López-Fidalgo, 2023. "An equivalence theorem for design optimality with respect to a multi-objective criterion," Statistical Papers, Springer, vol. 64(4), pages 1041-1056, August.
- Dette, Holger & Martinez Lopez, Ignacio & Ortiz Rodriguez, Isabel M. & Pepelyshev, Andrey, 2004. "Efficient design of experiment for exponential regression models," Technical Reports 2004,08, Technische Universität Dortmund, Sonderforschungsbereich 475: Komplexitätsreduktion in multivariaten Datenstrukturen.
- Dette, Holger & Melas, Viatcheslav B. & Pepelyshev, Andrey, 2006. "Optimal designs for free knot least squares splines," Technical Reports 2006,34, Technische Universität Dortmund, Sonderforschungsbereich 475: Komplexitätsreduktion in multivariaten Datenstrukturen.
- Oron Assaf P. & Azriel David & Hoff Peter D., 2011. "Dose-Finding Designs: The Role of Convergence Properties," The International Journal of Biostatistics, De Gruyter, vol. 7(1), pages 1-17, October.
- Husain, Bushra & Aslam, Fariha, 2024. "Weighted Simplex Centroid Mixture Experiments for third order Becker’s models: The R-optimal approach," Statistics & Probability Letters, Elsevier, vol. 213(C).
- Li, Guanghui & Zhang, Chongqi, 2017. "The pseudo component transformation design for experiment with mixture," Statistics & Probability Letters, Elsevier, vol. 131(C), pages 19-24.
- Braess, Dietrich & Dette, Holger, 2004. "On the number of support points of maximin and Bayesian D-optimal designs in nonlinear regression models," Technical Reports 2004,78, Technische Universität Dortmund, Sonderforschungsbereich 475: Komplexitätsreduktion in multivariaten Datenstrukturen.
More about this item
Keywords
Binary response model; Dose ranging; Dose response; Link function; General Equivalence Theorem; Locally compound optimal design;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:zbw:sfb475:200440. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ZBW - Leibniz Information Centre for Economics (email available below). General contact details of provider: https://edirc.repec.org/data/isdorde.html .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.