IDEAS home Printed from https://ideas.repec.org/p/zbw/sfb475/200440.html
   My bibliography  Save this paper

Optimal designs for dose-response models with restricted design spaces

Author

Listed:
  • Dette, Holger
  • Biedermann, Stefanie
  • Zhu, Wei

Abstract

In dose response studies, the dose range is often restricted due to concerns over drug toxicity and/or efficacy. We present restricted and unrestricted interval locally optimal designs with respect to a very general class of optimality criteria for estimating the underlying dose response curve. The underlying curve belongs to a diversified set of link functions suitable for the dose response studies and having a common canonical form. These include the fundamental binary response models – the logit and the probit as well as the skewed versions of these models. The results are illustrated through the re-design of a dose ranging trial conducted at the Merck Research Laboratories (Zeng and Zhu, 1997). This work is a generalization of the results of Dai and Zhu (2002) in terms of the design interval, the underlying dose response curve and the optimality criterion.

Suggested Citation

  • Dette, Holger & Biedermann, Stefanie & Zhu, Wei, 2004. "Optimal designs for dose-response models with restricted design spaces," Technical Reports 2004,40, Technische Universität Dortmund, Sonderforschungsbereich 475: Komplexitätsreduktion in multivariaten Datenstrukturen.
  • Handle: RePEc:zbw:sfb475:200440
    as

    Download full text from publisher

    File URL: https://www.econstor.eu/bitstream/10419/22552/1/tr40-04.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Anthony Y. C. Kuk, 2004. "A litter‐based approach to risk assessment in developmental toxicity studies via a power family of completely monotone functions," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 53(2), pages 369-386, April.
    2. Holger Dette, 1997. "Designing Experiments with Respect to ‘Standardized’ Optimality Criteria," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 59(1), pages 97-110.
    3. Linda M. Haines & Inna Perevozskaya & William F. Rosenberger, 2003. "Bayesian Optimal Designs for Phase I Clinical Trials," Biometrics, The International Biometric Society, vol. 59(3), pages 591-600, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Dette, Holger & Biedermann, Stefanie & Zhu, Wei, 2005. "Compound Optimal Designs for Percentile Estimation in Dose-Response Models with Restricted Design Intervals," Technical Reports 2005,02, Technische Universität Dortmund, Sonderforschungsbereich 475: Komplexitätsreduktion in multivariaten Datenstrukturen.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dette, Holger & Biedermann, Stefanie & Zhu, Wei, 2005. "Geometric construction of optimal designs for dose-responsemodels with two parameters," Technical Reports 2005,08, Technische Universität Dortmund, Sonderforschungsbereich 475: Komplexitätsreduktion in multivariaten Datenstrukturen.
    2. Dette, Holger & Biedermann, Stefanie & Zhu, Wei, 2005. "Compound Optimal Designs for Percentile Estimation in Dose-Response Models with Restricted Design Intervals," Technical Reports 2005,02, Technische Universität Dortmund, Sonderforschungsbereich 475: Komplexitätsreduktion in multivariaten Datenstrukturen.
    3. Kolossiatis, M. & Griffin, J.E. & Steel, M.F.J., 2011. "Modeling overdispersion with the normalized tempered stable distribution," Computational Statistics & Data Analysis, Elsevier, vol. 55(7), pages 2288-2301, July.
    4. Dennis Schmidt & Rainer Schwabe, 2015. "On optimal designs for censored data," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 78(3), pages 237-257, April.
    5. Lenka Filová & Mária Trnovská & Radoslav Harman, 2012. "Computing maximin efficient experimental designs using the methods of semidefinite programming," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 75(5), pages 709-719, July.
    6. Pepelyshev, Andrey & Melas, Viatcheslav B. & Strigul, Nikolay & Dette, Holger, 2004. "Design of experiments for the Monod model : robust and efficient designs," Technical Reports 2004,36, Technische Universität Dortmund, Sonderforschungsbereich 475: Komplexitätsreduktion in multivariaten Datenstrukturen.
    7. Lei He & Rong-Xian Yue, 2020. "R-optimal designs for trigonometric regression models," Statistical Papers, Springer, vol. 61(5), pages 1997-2013, October.
    8. Dette, Holger & O'Brien, Timothy E., 2003. "Efficient experimental design for the Behrens-Fisher problem with application to bioassay," Technical Reports 2003,21, Technische Universität Dortmund, Sonderforschungsbereich 475: Komplexitätsreduktion in multivariaten Datenstrukturen.
    9. Daniel R. Cavagnaro & Richard Gonzalez & Jay I. Myung & Mark A. Pitt, 2013. "Optimal Decision Stimuli for Risky Choice Experiments: An Adaptive Approach," Management Science, INFORMS, vol. 59(2), pages 358-375, February.
    10. Harman, Radoslav & Jurík, Tomás, 2008. "Computing c-optimal experimental designs using the simplex method of linear programming," Computational Statistics & Data Analysis, Elsevier, vol. 53(2), pages 247-254, December.
    11. Azriel, David, 2014. "Optimal sequential designs in phase I studies," Computational Statistics & Data Analysis, Elsevier, vol. 71(C), pages 288-297.
    12. Hertel, Ida & Kohler, Michael, 2013. "Estimation of the optimal design of a nonlinear parametric regression problem via Monte Carlo experiments," Computational Statistics & Data Analysis, Elsevier, vol. 59(C), pages 1-12.
    13. Yu, Chang & Zelterman, Daniel, 2008. "Sums of exchangeable Bernoulli random variables for family and litter frequency data," Computational Statistics & Data Analysis, Elsevier, vol. 52(3), pages 1636-1649, January.
    14. Chiara Tommasi & Juan M. Rodríguez-Díaz & Jesús F. López-Fidalgo, 2023. "An equivalence theorem for design optimality with respect to a multi-objective criterion," Statistical Papers, Springer, vol. 64(4), pages 1041-1056, August.
    15. Dette, Holger & Martinez Lopez, Ignacio & Ortiz Rodriguez, Isabel M. & Pepelyshev, Andrey, 2004. "Efficient design of experiment for exponential regression models," Technical Reports 2004,08, Technische Universität Dortmund, Sonderforschungsbereich 475: Komplexitätsreduktion in multivariaten Datenstrukturen.
    16. Dette, Holger & Melas, Viatcheslav B. & Pepelyshev, Andrey, 2006. "Optimal designs for free knot least squares splines," Technical Reports 2006,34, Technische Universität Dortmund, Sonderforschungsbereich 475: Komplexitätsreduktion in multivariaten Datenstrukturen.
    17. Oron Assaf P. & Azriel David & Hoff Peter D., 2011. "Dose-Finding Designs: The Role of Convergence Properties," The International Journal of Biostatistics, De Gruyter, vol. 7(1), pages 1-17, October.
    18. Li, Guanghui & Zhang, Chongqi, 2017. "The pseudo component transformation design for experiment with mixture," Statistics & Probability Letters, Elsevier, vol. 131(C), pages 19-24.
    19. Braess, Dietrich & Dette, Holger, 2004. "On the number of support points of maximin and Bayesian D-optimal designs in nonlinear regression models," Technical Reports 2004,78, Technische Universität Dortmund, Sonderforschungsbereich 475: Komplexitätsreduktion in multivariaten Datenstrukturen.
    20. Alessandra Giovagnoli, 2021. "The Bayesian Design of Adaptive Clinical Trials," IJERPH, MDPI, vol. 18(2), pages 1-15, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:zbw:sfb475:200440. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ZBW - Leibniz Information Centre for Economics (email available below). General contact details of provider: https://edirc.repec.org/data/isdorde.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.