IDEAS home Printed from https://ideas.repec.org/p/zbw/sfb373/199987.html
   My bibliography  Save this paper

Empirical process of the squared residuals of an ARCH sequence

Author

Listed:
  • Horvath, Lajos
  • Kokoszka, Piotr
  • Teyssière, Gilles

Abstract

We show that the empirical process of the squared residuals of an ARCH(p) sequence converges in distribution 1,0 a Gaussirm process B(F(t)) +t f(t) e, where F is the distribution function of the squared innovations, f its derivative, {B(tl, 0 1} a Brownian bridge and e a normal random variable.

Suggested Citation

  • Horvath, Lajos & Kokoszka, Piotr & Teyssière, Gilles, 1999. "Empirical process of the squared residuals of an ARCH sequence," SFB 373 Discussion Papers 1999,87, Humboldt University of Berlin, Interdisciplinary Research Project 373: Quantification and Simulation of Economic Processes.
  • Handle: RePEc:zbw:sfb373:199987
    as

    Download full text from publisher

    File URL: https://www.econstor.eu/bitstream/10419/61773/1/722908873.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Elena Andreou, 2004. "The Impact of Sampling Frequency and Volatility Estimators on Change-Point Tests," Journal of Financial Econometrics, Oxford University Press, vol. 2(2), pages 290-318.
    2. Andreou, Elena & Ghysels, Eric, 2006. "Monitoring disruptions in financial markets," Journal of Econometrics, Elsevier, vol. 135(1-2), pages 77-124.
    3. Zhu, Ke, 2015. "Hausman tests for the error distribution in conditionally heteroskedastic models," MPRA Paper 66991, University Library of Munich, Germany.
    4. Elena Andreou & Eric Ghysels, 2004. "Monitoring for Disruptions in Financial Markets," CIRANO Working Papers 2004s-26, CIRANO.

    More about this item

    Keywords

    ARCH model; empirical process; squared residuals;
    All these keywords.

    JEL classification:

    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:zbw:sfb373:199987. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ZBW - Leibniz Information Centre for Economics (email available below). General contact details of provider: https://edirc.repec.org/data/sfhubde.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.