IDEAS home Printed from https://ideas.repec.org/p/zbw/safewp/314.html
   My bibliography  Save this paper

Market impact of government communication: The case of presidential tweets

Author

Listed:
  • Abdi, Farshid
  • Kormanyos, Emily
  • Pelizzon, Loriana
  • Getmansky, Mila
  • Simon, Zorka

Abstract

We propose the "President reacts to news" channel of stock returns by studying the financial market impact of the Twitter account of the 45th president of the United States, Donald Trump. We use machine learning algorithms to classify topic and textual sentiment of 1,400 economy-related tweets to investigate whether they contain relevant information for financial markets. Analyzing high-frequency data, we find that after controlling for past market movements, most tweets are reactive and predictable, rather than novel and informative. The exceptions are tweet topics where the president has direct policy authority and his negative sentiment could adversely a↵ect economic outcomes.

Suggested Citation

  • Abdi, Farshid & Kormanyos, Emily & Pelizzon, Loriana & Getmansky, Mila & Simon, Zorka, 2021. "Market impact of government communication: The case of presidential tweets," SAFE Working Paper Series 314, Leibniz Institute for Financial Research SAFE, revised 2021.
  • Handle: RePEc:zbw:safewp:314
    DOI: 10.2139/ssrn.3840203
    as

    Download full text from publisher

    File URL: https://www.econstor.eu/bitstream/10419/243280/1/safe-wp-314-rev2021-09.pdf
    Download Restriction: no

    File URL: https://libkey.io/10.2139/ssrn.3840203?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Ben S. Bernanke & Kenneth N. Kuttner, 2005. "What Explains the Stock Market's Reaction to Federal Reserve Policy?," Journal of Finance, American Finance Association, vol. 60(3), pages 1221-1257, June.
    2. Heba Ali, 2018. "Twitter, Investor Sentiment and Capital Markets: What Do We Know?," International Journal of Economics and Finance, Canadian Center of Science and Education, vol. 10(8), pages 158-158, August.
    3. repec:cup:cbooks:9781108422536 is not listed on IDEAS
    4. Sanjiv R. Das & Mike Y. Chen, 2007. "Yahoo! for Amazon: Sentiment Extraction from Small Talk on the Web," Management Science, INFORMS, vol. 53(9), pages 1375-1388, September.
    5. Kuttner, Kenneth N., 2001. "Monetary policy surprises and interest rates: Evidence from the Fed funds futures market," Journal of Monetary Economics, Elsevier, vol. 47(3), pages 523-544, June.
    6. Grossman, Sanford J & Stiglitz, Joseph E, 1980. "On the Impossibility of Informationally Efficient Markets," American Economic Review, American Economic Association, vol. 70(3), pages 393-408, June.
    7. Behrendt, Simon & Schmidt, Alexander, 2018. "The Twitter myth revisited: Intraday investor sentiment, Twitter activity and individual-level stock return volatility," Journal of Banking & Finance, Elsevier, vol. 96(C), pages 355-367.
    8. Andrei Kirilenko & Albert S. Kyle & Mehrdad Samadi & Tugkan Tuzun, 2017. "The Flash Crash: High-Frequency Trading in an Electronic Market," Journal of Finance, American Finance Association, vol. 72(3), pages 967-998, June.
    9. Cieslak, Anna & Schrimpf, Andreas, 2019. "Non-monetary news in central bank communication," Journal of International Economics, Elsevier, vol. 118(C), pages 293-315.
    10. Ricardo Correa & Keshav Garud & Juan M Londono & Nathan Mislang, 2021. "Sentiment in Central Banks’ Financial Stability Reports," Review of Finance, European Finance Association, vol. 25(1), pages 85-120.
    11. F. M. Bandi & J. R. Russell, 2008. "Microstructure Noise, Realized Variance, and Optimal Sampling," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 75(2), pages 339-369.
    12. Torben G. Andersen & Tim Bollerslev & Francis X. Diebold & Paul Labys, 2003. "Modeling and Forecasting Realized Volatility," Econometrica, Econometric Society, vol. 71(2), pages 579-625, March.
    13. Itzhak Ben‐David & Francesco Franzoni & Rabih Moussawi, 2018. "Do ETFs Increase Volatility?," Journal of Finance, American Finance Association, vol. 73(6), pages 2471-2535, December.
    14. Lawrence Glosten & Suresh Nallareddy & Yuan Zou, 2021. "ETF Activity and Informational Efficiency of Underlying Securities," Management Science, INFORMS, vol. 67(1), pages 22-47, January.
    15. Jiao, Peiran & Veiga, André & Walther, Ansgar, 2020. "Social media, news media and the stock market," Journal of Economic Behavior & Organization, Elsevier, vol. 176(C), pages 63-90.
    16. Alexander Hillert & Heiko Jacobs & Sebastian Müller, 2014. "Media Makes Momentum," The Review of Financial Studies, Society for Financial Studies, vol. 27(12), pages 3467-3501.
    17. Constantin Colonescu, 2018. "The Effects of Donald Trump's Tweets on US Financial and Foreign Exchange Markets," Athens Journal of Business & Economics, Athens Institute for Education and Research (ATINER), vol. 4(4), pages 375-388, October.
    18. Anna Cieslak & Annette Vissing-Jorgensen, 2021. "The Economics of the Fed Put," The Review of Financial Studies, Society for Financial Studies, vol. 34(9), pages 4045-4089.
    19. Tim Loughran & Bill McDonald, 2020. "Textual Analysis in Finance," Annual Review of Financial Economics, Annual Reviews, vol. 12(1), pages 357-375, December.
    20. Fama, Eugene F, 1970. "Efficient Capital Markets: A Review of Theory and Empirical Work," Journal of Finance, American Finance Association, vol. 25(2), pages 383-417, May.
    21. Lily Fang & Joel Peress, 2009. "Media Coverage and the Cross‐section of Stock Returns," Journal of Finance, American Finance Association, vol. 64(5), pages 2023-2052, October.
    22. Casey Dougal & Joseph Engelberg & Diego García & Christopher A. Parsons, 2012. "Journalists and the Stock Market," The Review of Financial Studies, Society for Financial Studies, vol. 25(3), pages 639-679.
    23. Heckman, James, 2013. "Sample selection bias as a specification error," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 31(3), pages 129-137.
    24. Tim Loughran & Bill McDonald, 2015. "The Use of Word Lists in Textual Analysis," Journal of Behavioral Finance, Taylor & Francis Journals, vol. 16(1), pages 1-11, January.
    25. Brooks,Chris, 2019. "Introductory Econometrics for Finance," Cambridge Books, Cambridge University Press, number 9781108436823, September.
    26. Joseph E. Engelberg & Christopher A. Parsons, 2011. "The Causal Impact of Media in Financial Markets," Journal of Finance, American Finance Association, vol. 66(1), pages 67-97, February.
    27. Klaus, Jürgen & Koser, Christoph, 2021. "Measuring Trump: The Volfefe Index and its impact on European financial markets," Finance Research Letters, Elsevier, vol. 38(C).
    28. Joel Hasbrouck, 2003. "Intraday Price Formation in U.S. Equity Index Markets," Journal of Finance, American Finance Association, vol. 58(6), pages 2375-2400, December.
    29. Born, Jeffery A. & Myers, David H. & Clark, William J., 2017. "Trump tweets and the efficient Market Hypothesis," Algorithmic Finance, IOS Press, vol. 6(3-4), pages 103-109.
    30. Tim Loughran & Bill Mcdonald, 2016. "Textual Analysis in Accounting and Finance: A Survey," Journal of Accounting Research, Wiley Blackwell, vol. 54(4), pages 1187-1230, September.
    31. Bianchi, Francesco & Gómez-Cram, Roberto & Kind, Thilo & Kung, Howard, 2023. "Threats to central bank independence: High-frequency identification with twitter," Journal of Monetary Economics, Elsevier, vol. 135(C), pages 37-54.
    32. Timm O. Sprenger & Philipp G. Sandner & Andranik Tumasjan & Isabell M. Welpe, 2014. "News or Noise? Using Twitter to Identify and Understand Company-specific News Flow," Journal of Business Finance & Accounting, Wiley Blackwell, vol. 41(7-8), pages 791-830, September.
    33. repec:bla:jfinan:v:59:y:2004:i:3:p:1259-1294 is not listed on IDEAS
    34. Anna Cieslak & Adair Morse & Annette Vissing‐Jorgensen, 2019. "Stock Returns over the FOMC Cycle," Journal of Finance, American Finance Association, vol. 74(5), pages 2201-2248, October.
    35. Tim Loughran & Bill Mcdonald, 2011. "When Is a Liability Not a Liability? Textual Analysis, Dictionaries, and 10‐Ks," Journal of Finance, American Finance Association, vol. 66(1), pages 35-65, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Blankespoor, Elizabeth & deHaan, Ed & Marinovic, Iván, 2020. "Disclosure processing costs, investors’ information choice, and equity market outcomes: A review," Journal of Accounting and Economics, Elsevier, vol. 70(2).
    2. Gómez-Cram, Roberto & Grotteria, Marco, 2022. "Real-time price discovery via verbal communication: Method and application to Fedspeak," Journal of Financial Economics, Elsevier, vol. 143(3), pages 993-1025.
    3. Daniele Ballinari & Simon Behrendt, 2021. "How to gauge investor behavior? A comparison of online investor sentiment measures," Digital Finance, Springer, vol. 3(2), pages 169-204, June.
    4. Vijay S. Sampath & Arthur J. O’Connor & Calvester Legister, 2022. "Moral leadership and investor attention: An empirical assessment of the potus’s tweets on firms’ market returns," Review of Quantitative Finance and Accounting, Springer, vol. 58(3), pages 881-910, April.
    5. Ahmad, Khurshid & Han, JingGuang & Hutson, Elaine & Kearney, Colm & Liu, Sha, 2016. "Media-expressed negative tone and firm-level stock returns," Journal of Corporate Finance, Elsevier, vol. 37(C), pages 152-172.
    6. Renault, Thomas, 2017. "Intraday online investor sentiment and return patterns in the U.S. stock market," Journal of Banking & Finance, Elsevier, vol. 84(C), pages 25-40.
    7. Chau, Michael & Lin, Chih-Yung & Lin, Tse-Chun, 2020. "Wisdom of crowds before the 2007–2009 global financial crisis," Journal of Financial Stability, Elsevier, vol. 48(C).
    8. Rui Fan & Oleksandr Talavera & Vu Tran, 2020. "Social media bots and stock markets," European Financial Management, European Financial Management Association, vol. 26(3), pages 753-777, June.
    9. Liu, Sha & Han, Jingguang, 2020. "Media tone and expected stock returns," International Review of Financial Analysis, Elsevier, vol. 70(C).
    10. Möller, Rouven & Reichmann, Doron, 2021. "ECB language and stock returns – A textual analysis of ECB press conferences," The Quarterly Review of Economics and Finance, Elsevier, vol. 80(C), pages 590-604.
    11. Jacobs, Heiko, 2020. "Hype or help? Journalists’ perceptions of mispriced stocks," Journal of Economic Behavior & Organization, Elsevier, vol. 178(C), pages 550-565.
    12. Löffler, Gunter & Norden, Lars & Rieber, Alexander, 2021. "Negative news and the stock market impact of tone in rating reports," Journal of Banking & Finance, Elsevier, vol. 133(C).
    13. Hillert, Alexander & Jacobs, Heiko & Müller, Sebastian, 2018. "Journalist disagreement," Journal of Financial Markets, Elsevier, vol. 41(C), pages 57-76.
    14. Vegard Høghaug Larsen & Leif Anders Thorsrud, 2022. "Asset returns, news topics, and media effects," Scandinavian Journal of Economics, Wiley Blackwell, vol. 124(3), pages 838-868, July.
    15. Kerssenfischer, Mark & Schmeling, Maik, 2024. "What moves markets?," Journal of Monetary Economics, Elsevier, vol. 145(C).
    16. Bennani, Hamza, 2019. "Does People's Bank of China communication matter? Evidence from stock market reaction," Emerging Markets Review, Elsevier, vol. 40(C), pages 1-1.
    17. Goodell, John W. & Kumar, Satish & Lim, Weng Marc & Pattnaik, Debidutta, 2021. "Artificial intelligence and machine learning in finance: Identifying foundations, themes, and research clusters from bibliometric analysis," Journal of Behavioral and Experimental Finance, Elsevier, vol. 32(C).
    18. Mansouri, Sasan, 2021. "Does firm's silence drive media's attention away?," VfS Annual Conference 2021 (Virtual Conference): Climate Economics 242433, Verein für Socialpolitik / German Economic Association.
    19. Prajwal Eachempati & Praveen Ranjan Srivastava, 2021. "Accounting for unadjusted news sentiment for asset pricing," Qualitative Research in Financial Markets, Emerald Group Publishing Limited, vol. 13(3), pages 383-422, May.
    20. Christina Bannier & Thomas Pauls & Andreas Walter, 2019. "Content analysis of business communication: introducing a German dictionary," Journal of Business Economics, Springer, vol. 89(1), pages 79-123, February.

    More about this item

    Keywords

    Government communication; Social media; Twitter; Machine learning; ETFs;
    All these keywords.

    JEL classification:

    • G10 - Financial Economics - - General Financial Markets - - - General (includes Measurement and Data)
    • G14 - Financial Economics - - General Financial Markets - - - Information and Market Efficiency; Event Studies; Insider Trading
    • C58 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Financial Econometrics

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:zbw:safewp:314. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ZBW - Leibniz Information Centre for Economics (email available below). General contact details of provider: https://edirc.repec.org/data/csafede.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.