IDEAS home Printed from https://ideas.repec.org/p/zbw/iwqwdp/222017.html
   My bibliography  Save this paper

Relative efficiency of confidence interval methods around effect sizes

Author

Listed:
  • Doll, Monika

Abstract

Reporting effect sizes and corresponding confidence intervals is increasingly demanded, which generates interest to analyze the performance of confidence intervals around effect sizes. As effect sizes take on the value zero in case of no effect per definition, not only the inclusion of the population effect, but also the exclusion of the value zero are therefore performance criteria for these intervals. This study is the first to compare the performance of confidence interval methods applying these two criteria via determining their finite relative efficiency. Computing the quotient of two methods' minimum required sample sizes to achieve levels of both criteria allows to account for the problem of limitations in available observations, which often occurs in the educational, behavioral or social sciences. Results indicate that confidence intervals based on a noncentral t-distribution around the robust effect size proposed by Algina et al. (2005) possess high relative efficiency.

Suggested Citation

  • Doll, Monika, 2017. "Relative efficiency of confidence interval methods around effect sizes," FAU Discussion Papers in Economics 22/2017, Friedrich-Alexander University Erlangen-Nuremberg, Institute for Economics.
  • Handle: RePEc:zbw:iwqwdp:222017
    as

    Download full text from publisher

    File URL: https://www.econstor.eu/bitstream/10419/172290/1/100717952X.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ronald L. Wasserstein & Nicole A. Lazar, 2016. "The ASA's Statement on p -Values: Context, Process, and Purpose," The American Statistician, Taylor & Francis Journals, vol. 70(2), pages 129-133, May.
    2. Kelley, Ken, 2007. "Confidence Intervals for Standardized Effect Sizes: Theory, Application, and Implementation," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 20(i08).
    3. Larry V. Hedges, 1981. "Distribution Theory for Glass's Estimator of Effect size and Related Estimators," Journal of Educational and Behavioral Statistics, , vol. 6(2), pages 107-128, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Maurizio Canavari & Andreas C. Drichoutis & Jayson L. Lusk & Rodolfo M. Nayga, Jr., 2018. "How to run an experimental auction: A review of recent advances," Working Papers 2018-5, Agricultural University of Athens, Department Of Agricultural Economics.
    2. Marko Hofmann & Silja Meyer-Nieberg, 2018. "Time to dispense with the p-value in OR?," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 26(1), pages 193-214, March.
    3. Jyotirmoy Sarkar, 2018. "Will P†Value Triumph over Abuses and Attacks?," Biostatistics and Biometrics Open Access Journal, Juniper Publishers Inc., vol. 7(4), pages 66-71, July.
    4. Julio Cabero-Almenara & Julio Barroso-Osuna & Carmen Llorente-Cejudo & María del Mar Fernández Martínez, 2019. "Educational Uses of Augmented Reality (AR): Experiences in Educational Science," Sustainability, MDPI, vol. 11(18), pages 1-18, September.
    5. Segurado, Pedro & Gutiérrez-Cánovas, Cayetano & Ferreira, Teresa & Branco, Paulo, 2022. "Stressor gradient coverage affects interaction identification," Ecological Modelling, Elsevier, vol. 472(C).
    6. Gergely Ganics & Atsushi Inoue & Barbara Rossi, 2021. "Confidence Intervals for Bias and Size Distortion in IV and Local Projections-IV Models," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 39(1), pages 307-324, January.
    7. Oliver Schilke & Sheen S. Levine & Olenka Kacperczyk & Lynne G. Zucker, 2019. "Call for Papers-Special Issue on Experiments in Organizational Theory," Organization Science, INFORMS, vol. 30(1), pages 232-234, February.
    8. Lopez, Belen & Rangel, Celia & Fernández, Manuel, 2022. "The impact of corporate social responsibility strategy on the management and governance axis for sustainable growth," Journal of Business Research, Elsevier, vol. 150(C), pages 690-698.
    9. Michaelides, Michael, 2021. "Large sample size bias in empirical finance," Finance Research Letters, Elsevier, vol. 41(C).
    10. Kelter, Riko, 2022. "Power analysis and type I and type II error rates of Bayesian nonparametric two-sample tests for location-shifts based on the Bayes factor under Cauchy priors," Computational Statistics & Data Analysis, Elsevier, vol. 165(C).
    11. Xian Jin Xie, 2019. "Research Reproducibility and p-value Threshold," Biomedical Journal of Scientific & Technical Research, Biomedical Research Network+, LLC, vol. 22(5), pages 16934-16936, November.
    12. Wildgaard, Lorna, 2016. "A critical cluster analysis of 44 indicators of author-level performance," Journal of Informetrics, Elsevier, vol. 10(4), pages 1055-1078.
    13. Chatelain, Jean-Bernard & Ralf, Kirsten, 2021. "Inference on time-invariant variables using panel data: A pretest estimator," Economic Modelling, Elsevier, vol. 97(C), pages 157-166.
    14. Karmakar, Bisheswar & Pal, Sucharita & Gopikrishna, Konga & Tiwari, Onkar Nath & Halder, Gopinath, 2022. "Injection of superheated C1 and C3 alcohols in non-edible Pongamia pinnata oil for semi-continuous uncatalyzed biodiesel synthesis," Renewable Energy, Elsevier, vol. 185(C), pages 850-861.
    15. Ben Moews & J. Michael Herrmann & Gbenga Ibikunle, 2018. "Lagged correlation-based deep learning for directional trend change prediction in financial time series," Papers 1811.11287, arXiv.org, revised Nov 2018.
    16. David Spiegelhalter, 2017. "Trust in numbers," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 180(4), pages 948-965, October.
    17. Eszter Czibor & David Jimenez‐Gomez & John A. List, 2019. "The Dozen Things Experimental Economists Should Do (More of)," Southern Economic Journal, John Wiley & Sons, vol. 86(2), pages 371-432, October.
    18. repec:jss:jstsof:20:i01 is not listed on IDEAS
    19. Haas Franz, 2016. "Reappraisal of Austrian Business Confidence Survey 2015 for Mainland China," Proceedings of FIKUSZ 2016, in: Regina Zsuzsánna Reicher (ed.),Proceedings of FIKUSZ '16, pages 57-64, Óbuda University, Keleti Faculty of Business and Management.
    20. Robert Rieg, 2018. "Tasks, interaction and role perception of management accountants: evidence from Germany," Journal of Management Control: Zeitschrift für Planung und Unternehmenssteuerung, Springer, vol. 29(2), pages 183-220, August.
    21. Bertoldi, Paolo & Mosconi, Rocco, 2020. "Do energy efficiency policies save energy? A new approach based on energy policy indicators (in the EU Member States)," Energy Policy, Elsevier, vol. 139(C).

    More about this item

    Keywords

    Effect Size; Confidence Interval; Minimum Required Sample Size; Finite Relative Efficiency;
    All these keywords.

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:zbw:iwqwdp:222017. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ZBW - Leibniz Information Centre for Economics (email available below). General contact details of provider: https://edirc.repec.org/data/vierlde.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.