IDEAS home Printed from https://ideas.repec.org/p/zbw/iwkkur/782016.html
   My bibliography  Save this paper

Big-Data-Analyse: Ein Einstieg für Ökonomen

Author

Listed:
  • Engels, Barbara

Abstract

Big Data ist eines der spannendsten Mysterien der Gegenwart. Jeder redet davon, keiner weiß, wie es genau geht, alle geben vor, es zu tun - so hat es der Ökonom Dan Ariely mal formuliert. Dieser Kurzbericht gibt einen Überblick darüber, inwiefern Big-Data-Analysen in Wirtschaftswissenschaft und Politikberatung bereits eingesetzt werden und welche Nutzungspotenziale es gibt.

Suggested Citation

  • Engels, Barbara, 2016. "Big-Data-Analyse: Ein Einstieg für Ökonomen," IW-Kurzberichte 78.2016, Institut der deutschen Wirtschaft (IW) / German Economic Institute.
  • Handle: RePEc:zbw:iwkkur:782016
    as

    Download full text from publisher

    File URL: https://www.econstor.eu/bitstream/10419/157584/1/IW-Kurzbericht_2016-78.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Tuhkuri, Joonas, 2014. "Big Data: Google Searches Predict Unemployment in Finland," ETLA Reports 31, The Research Institute of the Finnish Economy.
    2. Nikolaos Askitas, 2016. "Big Data is a big deal but how much data do we need? [Big Data gut und schön. Aber wie viel Data brauchen wir?]," AStA Wirtschafts- und Sozialstatistisches Archiv, Springer;Deutsche Statistische Gesellschaft - German Statistical Society, vol. 10(2), pages 113-125, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Anttonen, Jetro, 2018. "Nowcasting the Unemployment Rate in the EU with Seasonal BVAR and Google Search Data," ETLA Working Papers 62, The Research Institute of the Finnish Economy.
    2. Tuhkuri, Joonas, 2016. "Forecasting Unemployment with Google Searches," ETLA Working Papers 35, The Research Institute of the Finnish Economy.
    3. Tuhkuri, Joonas, 2016. "ETLAnow: A Model for Forecasting with Big Data – Forecasting Unemployment with Google Searches in Europe," ETLA Reports 54, The Research Institute of the Finnish Economy.
    4. Ralf Thomas Münnich & Markus Zwick, 2016. "Big Data und was nun? Neue Datenbestände und ihre Auswirkungen," AStA Wirtschafts- und Sozialstatistisches Archiv, Springer;Deutsche Statistische Gesellschaft - German Statistical Society, vol. 10(2), pages 73-77, October.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:zbw:iwkkur:782016. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ZBW - Leibniz Information Centre for Economics (email available below). General contact details of provider: https://edirc.repec.org/data/iwkolde.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.