Big Data is a big deal but how much data do we need?
[Big Data gut und schön. Aber wie viel Data brauchen wir?]
Author
Abstract
Suggested Citation
DOI: 10.1007/s11943-016-0191-3
Download full text from publisher
As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.
Other versions of this item:
- Askitas, Nikos, 2016. "Big Data Is a Big Deal But How Much Data Do We Need?," IZA Discussion Papers 9988, Institute of Labor Economics (IZA).
References listed on IDEAS
- Robert J. Shiller, 2015. "Irrational Exuberance," Economics Books, Princeton University Press, edition 3, number 10421.
- Jon Kleinberg & Jens Ludwig & Sendhil Mullainathan & Ziad Obermeyer, 2015. "Prediction Policy Problems," American Economic Review, American Economic Association, vol. 105(5), pages 491-495, May.
- Nikolaos Askitas & Klaus F. Zimmermann, 2015.
"The internet as a data source for advancement in social sciences,"
International Journal of Manpower, Emerald Group Publishing Limited, vol. 36(1), pages 2-12, April.
- Nikolaos Askitas & Klaus F. Zimmermann, 2015. "The Internet as a Data Source for Advancement in Social Sciences," RatSWD Working Papers 248, German Data Forum (RatSWD).
- Askitas, Nikos & Zimmermann, Klaus F., 2015. "The Internet as a Data Source for Advancement in Social Sciences," IZA Discussion Papers 8899, Institute of Labor Economics (IZA).
- Natalie Shlomo & Harvey Goldstein, 2015. "Editorial: Big data in social research," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 178(4), pages 787-790, October.
- Ron S. Kenett & Galit Shmueli, 2014. "On information quality," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 177(1), pages 3-38, January.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Engels, Barbara, 2016. "Big-Data-Analyse: Ein Einstieg für Ökonomen," IW-Kurzberichte 78.2016, Institut der deutschen Wirtschaft (IW) / German Economic Institute.
- Ralf Thomas Münnich & Markus Zwick, 2016. "Big Data und was nun? Neue Datenbestände und ihre Auswirkungen," AStA Wirtschafts- und Sozialstatistisches Archiv, Springer;Deutsche Statistische Gesellschaft - German Statistical Society, vol. 10(2), pages 73-77, October.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Sophie-Charlotte Klose & Johannes Lederer, 2020. "A Pipeline for Variable Selection and False Discovery Rate Control With an Application in Labor Economics," Papers 2006.12296, arXiv.org, revised Jun 2020.
- Daisuke Ikeda & Toan Phan & Timothy Sablik, 2020.
"Asset Bubbles and Global Imbalances,"
Richmond Fed Economic Brief, Federal Reserve Bank of Richmond, vol. 20, pages 1-4, January.
- Daisuke Ikeda & Toan Phan, 2019. "Asset Bubbles and Global Imbalances," American Economic Journal: Macroeconomics, American Economic Association, vol. 11(3), pages 209-251, July.
- Daisuke Ikeda & Toan Phan, 2018. "Asset Bubbles and Global Imbalances," Working Paper 18-7, Federal Reserve Bank of Richmond.
- Nicolaj N. Mühlbach, 2020. "Tree-based Synthetic Control Methods: Consequences of moving the US Embassy," CREATES Research Papers 2020-04, Department of Economics and Business Economics, Aarhus University.
- Joshua Schwartzstein & Adi Sunderam, 2021.
"Using Models to Persuade,"
American Economic Review, American Economic Association, vol. 111(1), pages 276-323, January.
- Joshua Schwartzstein & Adi Sunderam, 2019. "Using Models to Persuade," NBER Working Papers 26109, National Bureau of Economic Research, Inc.
- Aiello, Francesco & Albanese, Giuseppe & Piselli, Paolo, 2019. "Good value for public money? The case of R&D policy," Journal of Policy Modeling, Elsevier, vol. 41(6), pages 1057-1076.
- Pierpaolo D’Urso & Vincenzina Vitale, 2020. "Bayesian Networks Model Averaging for Bes Indicators," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 151(3), pages 897-919, October.
- Arısoy, Yakup Eser & Altay-Salih, Aslıhan & Akdeniz, Levent, 2015.
"Aggregate volatility expectations and threshold CAPM,"
The North American Journal of Economics and Finance, Elsevier, vol. 34(C), pages 231-253.
- Eser Arisoy & Aslihan Altay-Salih & Levent Akdeniz, 2015. "Aggregate Volatility Expectations and Threshold CAPM," Post-Print hal-01634175, HAL.
- Naguib, Costanza, 2019. "Estimating the Heterogeneous Impact of the Free Movement of Persons on Relative Wage Mobility," Economics Working Paper Series 1903, University of St. Gallen, School of Economics and Political Science.
- Pedro Carneiro & Sokbae Lee & Daniel Wilhelm, 2020.
"Optimal data collection for randomized control trials,"
The Econometrics Journal, Royal Economic Society, vol. 23(1), pages 1-31.
- Pedro Carneiro & Sokbae (Simon) Lee & Daniel Wilhelm, 2016. "Optimal data collection for randomized control trials," CeMMAP working papers CWP15/16, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Pedro Carneiro & Sokbae (Simon) Lee & Daniel Wilhelm, 2017. "Optimal data collection for randomized control trials," CeMMAP working papers 15/17, Institute for Fiscal Studies.
- Pedro Carneiro & Sokbae (Simon) Lee & Daniel Wilhelm, 2017. "Optimal data collection for randomized control trials," CeMMAP working papers 45/17, Institute for Fiscal Studies.
- Pedro Carneiro & Sokbae (Simon) Lee & Daniel Wilhelm, 2019. "Optimal Data Collection for Randomized Control Trials," CeMMAP working papers CWP21/19, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Pedro Carneiro & Sokbae (Simon) Lee & Daniel Wilhelm, 2017. "Optimal data collection for randomized control trials," CeMMAP working papers CWP15/17, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Carneiro, Pedro & Lee, Sokbae & Wilhelm, Daniel, 2016. "Optimal Data Collection for Randomized Control Trials," IZA Discussion Papers 9908, Institute of Labor Economics (IZA).
- Pedro Carneiro & Sokbae Lee & Daniel Wilhelm, 2016. "Optimal Data Collection for Randomized Control Trials," Papers 1603.03675, arXiv.org, revised Aug 2016.
- Pedro Carneiro & Sokbae (Simon) Lee & Daniel Wilhelm, 2017. "Optimal data collection for randomized control trials," CeMMAP working papers CWP45/17, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Pedro Carneiro & Sokbae (Simon) Lee & Daniel Wilhelm, 2016. "Optimal data collection for randomized control trials," CeMMAP working papers 15/16, Institute for Fiscal Studies.
- Lepinteur, Anthony & Waltl, Sofie R., 2020.
"Tracking Owners' Sentiments: Subjective Home Values, Expectations and House Price Dynamics,"
Department of Economics Working Paper Series
299, WU Vienna University of Economics and Business.
- Anthony Lepinteur & Sofie R. Waltl, 2021. "Tracking Owners’ Sentiments: Subjective Home Values, Expectations and House Price Dynamics," LISER Working Paper Series 2021-02, Luxembourg Institute of Socio-Economic Research (LISER).
- Anthony Lepinteur & Sofie R. Waltl, 2020. "Tracking Owners’ Sentiments: Subjective Home Values, Expectations and House Price Dynamics," Department of Economics Working Papers wuwp299, Vienna University of Economics and Business, Department of Economics.
- Niklas Gohl & Peter Haan & Claus Michelsen & Felix Weinhardt, 2022. "House Price Expectations," SOEPpapers on Multidisciplinary Panel Data Research 1162, DIW Berlin, The German Socio-Economic Panel (SOEP).
- Nwaobi, Godwin, 2019. "University Postgraduate Research Programmes: Digitization(ICT),Innovations and Applications," MPRA Paper 96730, University Library of Munich, Germany.
- Antunes, António & Bonfim, Diana & Monteiro, Nuno & Rodrigues, Paulo M.M., 2018.
"Forecasting banking crises with dynamic panel probit models,"
International Journal of Forecasting, Elsevier, vol. 34(2), pages 249-275.
- António R. Antunes & Diana Bonfim & Nuno Monteiro & Paulo M.M. Rodrigues, 2016. "Forecasting banking crises with dynamic panel probit models," Working Papers w201613, Banco de Portugal, Economics and Research Department.
- David Vidal-Tomás & Simone Alfarano, 2020.
"An agent-based early warning indicator for financial market instability,"
Journal of Economic Interaction and Coordination, Springer;Society for Economic Science with Heterogeneous Interacting Agents, vol. 15(1), pages 49-87, January.
- David Vidal-Tomás & Simone Alfarano, 2018. "An agent based early warning indicator for financial market instability," Working Papers 2018/12, Economics Department, Universitat Jaume I, Castellón (Spain).
- Vidal-Tomás, David & Alfarano, Simone, 2018. "An agent based early warning indicator for financial market instability," MPRA Paper 89693, University Library of Munich, Germany.
- Sarah Mignot & Fabio Tramontana & Frank Westerhoff, 2021.
"Speculative asset price dynamics and wealth taxes,"
Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 44(2), pages 641-667, December.
- Mignot, Sarah & Tramontana, Fabio & Westerhoff, Frank H., 2021. "Speculative asset price dynamics and wealth taxes," BERG Working Paper Series 169, Bamberg University, Bamberg Economic Research Group.
- Erik Heilmann & Janosch Henze & Heike Wetzel, 2021. "Machine learning in energy forecasts with an application to high frequency electricity consumption data," MAGKS Papers on Economics 202135, Philipps-Universität Marburg, Faculty of Business Administration and Economics, Department of Economics (Volkswirtschaftliche Abteilung).
- Resce, Giuliano & Vaquero-Piñeiro, Cristina, 2022.
"Predicting agri-food quality across space: A Machine Learning model for the acknowledgment of Geographical Indications,"
Food Policy, Elsevier, vol. 112(C).
- Resce, Giuliano & Vaquero-Pineiro, Cristina, 2022. "Predicting Agri-food Quality across Space: A Machine Learning Model for the Acknowledgment of Geographical Indications," Economics & Statistics Discussion Papers esdp22082, University of Molise, Department of Economics.
- Maysam Khodayari Gharanchaei & Reza Babazadeh, 2024. "Crisis Alpha: A High-Performance Trading Algorithm Tested in Market Downturns," Papers 2409.14510, arXiv.org.
- Edward L. Glaeser & Scott Duke Kominers & Michael Luca & Nikhil Naik, 2018.
"Big Data And Big Cities: The Promises And Limitations Of Improved Measures Of Urban Life,"
Economic Inquiry, Western Economic Association International, vol. 56(1), pages 114-137, January.
- Edward L. Glaeser & Scott Duke Kominers & Michael Luca & Nikhil Naik, 2015. "Big Data and Big Cities: The Promises and Limitations of Improved Measures of Urban Life," NBER Working Papers 21778, National Bureau of Economic Research, Inc.
- Edward L. Glaeser & Scott Duke Kominers & Michael Luca & Nikhil Naik, 2015. "Big Data and Big Cities: The Promises and Limitations of Improved Measures of Urban Life," Harvard Business School Working Papers 16-065, Harvard Business School.
- Glaeser, Edward L. & Kominers, Scott Duke & Luca, Michael & Naik, Nikhil, 2015. "Big Data and Big Cities: The Promises and Limitations of Improved Measures for Urban Life," Working Paper Series 15-075, Harvard University, John F. Kennedy School of Government.
- Garbero, Alessandra & Sakos, Grayson & Cerulli, Giovanni, 2023.
"Towards data-driven project design: Providing optimal treatment rules for development projects,"
Socio-Economic Planning Sciences, Elsevier, vol. 89(C).
- Garbero, Alessandra & Sakos, Grayson & Cerulli, Giovanni, 2021. "Towards Data-driven Project design: Providing Optimal Treatment Rules for Development Projects," 2021 Annual Meeting, August 1-3, Austin, Texas 314016, Agricultural and Applied Economics Association.
More about this item
Keywords
Big Data; Endogeneity; Social science; Causality; Prediction;All these keywords.
JEL classification:
- C80 - Mathematical and Quantitative Methods - - Data Collection and Data Estimation Methodology; Computer Programs - - - General
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:astaws:v:10:y:2016:i:2:d:10.1007_s11943-016-0191-3. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.