Big Data: Google Searches Predict Unemployment in Finland
Author
Abstract
Suggested Citation
Download full text from publisher
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Anttonen, Jetro, 2018. "Nowcasting the Unemployment Rate in the EU with Seasonal BVAR and Google Search Data," ETLA Working Papers 62, The Research Institute of the Finnish Economy.
- Engels, Barbara, 2016. "Big-Data-Analyse: Ein Einstieg für Ökonomen," IW-Kurzberichte 78.2016, Institut der deutschen Wirtschaft (IW) / German Economic Institute.
- Tuhkuri, Joonas, 2016. "Forecasting Unemployment with Google Searches," ETLA Working Papers 35, The Research Institute of the Finnish Economy.
- Tuhkuri, Joonas, 2016. "ETLAnow: A Model for Forecasting with Big Data – Forecasting Unemployment with Google Searches in Europe," ETLA Reports 54, The Research Institute of the Finnish Economy.
More about this item
Keywords
Big Data; Google; Internet; Nowcasting; Forecasting; Unemployment; Time-series analysis;All these keywords.
JEL classification:
- C1 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General
- C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
- C43 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods: Special Topics - - - Index Numbers and Aggregation
- C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
- C82 - Mathematical and Quantitative Methods - - Data Collection and Data Estimation Methodology; Computer Programs - - - Methodology for Collecting, Estimating, and Organizing Macroeconomic Data; Data Access
- E27 - Macroeconomics and Monetary Economics - - Consumption, Saving, Production, Employment, and Investment - - - Forecasting and Simulation: Models and Applications
NEP fields
This paper has been announced in the following NEP Reports:- NEP-FOR-2014-08-25 (Forecasting)
- NEP-MAC-2014-08-25 (Macroeconomics)
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:rif:report:31. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Kaija Hyvönen-Rajecki (email available below). General contact details of provider: https://edirc.repec.org/data/etlaafi.html .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.