IDEAS home Printed from https://ideas.repec.org/p/zbw/ifwkwp/1653.html
   My bibliography  Save this paper

Analysing bioenergy and land use competition in a coupled modelling system: The role of bioenergy in renewable energy policy in Germany

Author

Listed:
  • Delzeit, Ruth
  • Gömann, Horst
  • Holm-Müller, Karin
  • Kreins, Peter
  • Kretschmer, Bettina
  • Münch, Julia
  • Peterson, Sonja

Abstract

In the context of energy security and climate protection, biomass is given high importance. Nevertheless, land-use conflicts resulting from the cultivation of biomass and their economy-wide effects are yet to be fully understood. To shed light on this issue we link three distinctive models; a global, multi-regional general equilibrium model (DART), a regionalised agricultural sector model for Germany (RAUMIS) and a location model for biogas plants. The DART model allows capturing international and national feedback effects of an increased use of bioenergy such as increased agricultural prices. The interaction of DART and RAUMIS links global markets and connects them to the detailed specification of agricultural land use in Germany. Finally, we link this system to the newly developed location model ReSI-M that accounts for the location choices of biogas plants in Germany and the resulting regional markets for energy crop demand. As a first application of the modelling system we analyse the effects of the German Renewable Energy Source Act on German biogas production and of the EU 10%-biofuel target on German agriculture and world agricultural prices. A main result of the simulations is that accounting for existing land-use restrictions and land-use competition has a significant effect on model results.

Suggested Citation

  • Delzeit, Ruth & Gömann, Horst & Holm-Müller, Karin & Kreins, Peter & Kretschmer, Bettina & Münch, Julia & Peterson, Sonja, 2010. "Analysing bioenergy and land use competition in a coupled modelling system: The role of bioenergy in renewable energy policy in Germany," Kiel Working Papers 1653, Kiel Institute for the World Economy (IfW Kiel).
  • Handle: RePEc:zbw:ifwkwp:1653
    as

    Download full text from publisher

    File URL: https://www.econstor.eu/bitstream/10419/41453/1/637431464.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Klose, Andreas & Drexl, Andreas, 2005. "Facility location models for distribution system design," European Journal of Operational Research, Elsevier, vol. 162(1), pages 4-29, April.
    2. Beghin, John C. & Dong, Fengxia & Elobeid, Amani E. & Fabiosa, Jacinto F. & Fuller, Frank H. & Hart, Chad E. & Kovarik, Karen & Tokgoz, Simla & Yu, Tun-Hsiang (Edward) & Wailes, Eric J. & Chavez, Eddi, 2007. "FAPRI 2007 U.S. and World Agricultural Outlook," FAPRI Staff Reports 7296, Food and Agricultural Policy Research Institute (FAPRI).
    3. Kretschmer, Bettina & Narita, Daiju & Peterson, Sonja, 2009. "The economic effects of the EU biofuel target," Open Access Publications from Kiel Institute for the World Economy 32984, Kiel Institute for the World Economy (IfW Kiel).
    4. Delzeit, R. & Britz, W. & Holm-Müller, K., 2010. "Modelling regional maize market and transport distances for biogas production in Germany," Proceedings “Schriften der Gesellschaft für Wirtschafts- und Sozialwissenschaften des Landbaues e.V.”, German Association of Agricultural Economists (GEWISOLA), vol. 45, March.
    5. Kretschmer, Bettina & Peterson, Sonja, 2010. "Integrating bioenergy into computable general equilibrium models -- A survey," Energy Economics, Elsevier, vol. 32(3), pages 673-686, May.
    6. Richard E. Howitt, 1995. "Positive Mathematical Programming," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 77(2), pages 329-342.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Martin Henseler & Ruth Delzeit & Marcel Adenäuer & Sarah Baum & Peter Kreins, 2020. "Nitrogen Tax and Set-Aside as Greenhouse Gas Abatement Policies Under Global Change Scenarios: A Case Study for Germany," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 76(2), pages 299-329, July.
    2. Deppermann, Andre & Bruchof, David & Blesl, Markus & Boysen, Ole & Grethe, Harald, 2012. "Energy from biomass: linkages between the energy and the agricultural sector in the EU until 2050," 2012 Conference, August 18-24, 2012, Foz do Iguacu, Brazil 126754, International Association of Agricultural Economists.
    3. Delzeit, Ruth & Kellner, Ulla, 2011. "How location decisions influence transport costs of processed and unprocessed bioenergy digestates: The impact of plant size and location on profitability of biogas plants in Germany," Kiel Working Papers 1730, Kiel Institute for the World Economy (IfW Kiel).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Argueyrolles, Robin & Delzeit, Ruth, 2022. "The interconnections between Fossil Fuel Subsidy Reforms and biofuels," Conference papers 333492, Purdue University, Center for Global Trade Analysis, Global Trade Analysis Project.
    2. Qiu, Cheng & Colson, Gregory & Wetzstein, Michael, 2014. "An ethanol blend wall shift is prone to increase petroleum gasoline demand," Energy Economics, Elsevier, vol. 44(C), pages 160-165.
    3. Qu, Yang & Swales, J. Kim & Hooper, Tara & Austen, Melanie C. & Wang, Xinhao & Papathanasopoulou, Eleni & Huang, Junling & Yan, Xiaoyu, 2023. "Economic trade-offs in marine resource use between offshore wind farms and fisheries in Scottish waters," Energy Economics, Elsevier, vol. 125(C).
    4. Vincent Martinet, 2012. "Effect of soil heterogeneity on the welfare economics of biofuel policies," Working Papers 2012/01, INRA, Economie Publique.
    5. Condon, Nicole & Klemick, Heather & Wolverton, Ann, 2015. "Impacts of ethanol policy on corn prices: A review and meta-analysis of recent evidence," Food Policy, Elsevier, vol. 51(C), pages 63-73.
    6. Nolte, Stephan, 2008. "The Future Of The World Sugar Market--A Spatial Price Equilibrium Analysis," 107th Seminar, January 30-February 1, 2008, Sevilla, Spain 6663, European Association of Agricultural Economists.
    7. Kretschmer, Bettina & Narita, Daiju & Peterson, Sonja, 2009. "The economic effects of the EU biofuel target," Open Access Publications from Kiel Institute for the World Economy 32984, Kiel Institute for the World Economy (IfW Kiel).
    8. Grant J. Allan, 2015. "The Regional Economic Impacts of Biofuels: A Review of Multisectoral Modelling Techniques and Evaluation of Applications," Regional Studies, Taylor & Francis Journals, vol. 49(4), pages 615-643, April.
    9. Janda, Karel & Kristoufek, Ladislav & Zilberman, David, "undated". "Biofuels: review of policies and impacts," CUDARE Working Papers 120415, University of California, Berkeley, Department of Agricultural and Resource Economics.
    10. Doumax-Tagliavini, Virginie & Sarasa, Cristina, 2018. "Looking towards policies supporting biofuels and technological change: Evidence from France," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 430-439.
    11. Djanibekov, Utkur & Finger, Robert & Guta, Dawit Diriba & Varun, Gaur & Mirzabaev, Alisher, 2016. "A generic model for analyzing nexus issues of households’ bioenergy use," Discussion Papers 230416, University of Bonn, Center for Development Research (ZEF).
    12. U. Martin Persson, 2015. "The impact of biofuel demand on agricultural commodity prices: a systematic review," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 4(5), pages 410-428, September.
    13. Okwo, Adaora & Thomas, Valerie M., 2014. "Biomass feedstock contracts: Role of land quality and yield variability in near term feasibility," Energy Economics, Elsevier, vol. 42(C), pages 67-80.
    14. Vitezslav Pisa & Jan Bruha & Vitezslav Pisa, 2011. "Dynamics of the Commodity Prices and Quantities: An Analysis using a Dynamic Multiregional CGE Model," EcoMod2011 2889, EcoMod.
    15. Cao, Zhaodan & Zhu, Tingju & Cai, Ximing, 2023. "Hydro-agro-economic optimization for irrigated farming in an arid region: The Hetao Irrigation District, Inner Mongolia," Agricultural Water Management, Elsevier, vol. 277(C).
    16. Britz, Wolfgang & Linda, Arata, "undated". "How Important Are Crop Shares In Managing Risk For Specialized Arable Farms? A Panel Estimation Of A Programming Model For Three European Regions," 56th Annual Conference, Bonn, Germany, September 28-30, 2016 244801, German Association of Agricultural Economists (GEWISOLA).
    17. Hoefnagels, Ric & Banse, Martin & Dornburg, Veronika & Faaij, André, 2013. "Macro-economic impact of large-scale deployment of biomass resources for energy and materials on a national level—A combined approach for the Netherlands," Energy Policy, Elsevier, vol. 59(C), pages 727-744.
    18. Jacinto F. Fabiosa & John C. Beghin & Fengxia Dong & JAmani Elobeid & Simla Tokgoz & Tun-Hsiang Yu, 2010. "Land Allocation Effects of the Global Ethanol Surge: Predictions from the International FAPRI Model," Land Economics, University of Wisconsin Press, vol. 86(4), pages 687-706.
    19. Kooten, G. Cornelis van, 2013. "Modeling Forest Trade in Logs and Lumber: Qualitative and Quantitative Analysis," Working Papers 149182, University of Victoria, Resource Economics and Policy.
    20. Kaplan, Jonathan D. & Johansson, Robert C., 2003. "When The !%$? Hits The Land: Implications For Us Agriculture And Environment When Land Application Of Manure Is Constrained," 2003 Annual meeting, July 27-30, Montreal, Canada 22002, American Agricultural Economics Association (New Name 2008: Agricultural and Applied Economics Association).

    More about this item

    Keywords

    bioenergy; land use; renewable energy policy; coupled models; agricultural-sector models; CGE;
    All these keywords.

    JEL classification:

    • C61 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Optimization Techniques; Programming Models; Dynamic Analysis
    • C68 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Computable General Equilibrium Models
    • Q15 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Agriculture - - - Land Ownership and Tenure; Land Reform; Land Use; Irrigation; Agriculture and Environment
    • Q42 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - Alternative Energy Sources
    • Q48 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - Government Policy

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:zbw:ifwkwp:1653. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ZBW - Leibniz Information Centre for Economics (email available below). General contact details of provider: https://edirc.repec.org/data/iwkiede.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.