IDEAS home Printed from https://ideas.repec.org/p/zbw/ifwkwp/1475.html
   My bibliography  Save this paper

Carbon capture and storage & the optimal path of the carbon tax

Author

Listed:
  • Lontzek, Thomas S.
  • Rickels, Wilfried

Abstract

In the presence of rising carbon concentrations more attention should be given to the role of the oceans as a sink for atmospheric carbon. We do so by setting up a simple dynamic global carbon cycle model with two reservoirs containing atmosphere and two ocean layers. The net flux between these reservoirs is determined by the relative reservoir size and therefore constitutes a more appropriate description of the carbon cycle than a proportional decay assumption. We exploit the specific feature of our model, the mixing of the carbon reservoirs, by allowing for a special form of carbon capture and storage: The capture of CO2 from the air and the sequestration of CO2 into the deep ocean reservoir. We study the socially optimal anthropogenic intervention of the global carbon cycle using a non-renewable resource stock. We find that this kind of carbon capture and storage facilitates achieving strict stabilization targets for the atmospheric carbon content. It accelerates the slow natural flux within the carbon cycle, and because of its temporary abatement character it dampens the overshooting of the atmospheric reservoir. Furthermore, we analyze the optimal paths of the carbon tax. The carbon tax shows to be inverted u-shaped but depending on the initial sizes of the reservoirs and the speed of carbon fluxes between the reservoirs we also find the optimal tax to be increasing, decreasing or u-shaped. Finally, we suggest to link the level of the carbon tax to the declining ability of the deep ocean to absorb atmospheric carbon.

Suggested Citation

  • Lontzek, Thomas S. & Rickels, Wilfried, 2008. "Carbon capture and storage & the optimal path of the carbon tax," Kiel Working Papers 1475, Kiel Institute for the World Economy (IfW Kiel).
  • Handle: RePEc:zbw:ifwkwp:1475
    as

    Download full text from publisher

    File URL: https://www.econstor.eu/bitstream/10419/24871/1/589826441.PDF
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Farzin, Y H & Tahvonen, O, 1996. "Global Carbon Cycle and the Optimal Time Path of a Carbon Tax," Oxford Economic Papers, Oxford University Press, vol. 48(4), pages 515-536, October.
    2. Akimoto, Keigo & Tomoda, Toshimasa & Fujii, Yasumasa & Yamaji, Kenji, 2004. "Assessment of global warming mitigation options with integrated assessment model DNE21," Energy Economics, Elsevier, vol. 26(4), pages 635-653, July.
    3. Wilfried Rickels & Thomas S. Lontzek, 2012. "Optimal global carbon management with ocean sequestration," Oxford Economic Papers, Oxford University Press, vol. 64(2), pages 323-349, April.
    4. Toman, Michael A. & Withagen, Cees, 2000. "Accumulative pollution, "clean technology," and policy design," Resource and Energy Economics, Elsevier, vol. 22(4), pages 367-384, October.
    5. McFarland, James R. & Herzog, Howard J., 2006. "Incorporating carbon capture and storage technologies in integrated assessment models," Energy Economics, Elsevier, vol. 28(5-6), pages 632-652, November.
    6. Edmonds, Jae & Clarke, John & Dooley, James & Kim, Son H. & Smith, Steven J., 2004. "Stabilization of CO2 in a B2 world: insights on the roles of carbon capture and disposal, hydrogen, and transportation technologies," Energy Economics, Elsevier, vol. 26(4), pages 517-537, July.
    7. Ulph, Alistair & Ulph, David, 1994. "The Optimal Time Path of a Carbon Tax," Oxford Economic Papers, Oxford University Press, vol. 46(0), pages 857-868, Supplemen.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Alain Jean-Marie & Michel Moreaux & Mabel Tidball, 2011. "Carbon sequestration in leaky reservoirs," Post-Print hal-00863230, HAL.
    2. Grimaud, André & Rouge, Luc, 2014. "Carbon sequestration, economic policies and growth," Resource and Energy Economics, Elsevier, vol. 36(2), pages 307-331.
    3. John F. Raffensperger, 2020. "A price on warming with a supply chain directed market," Papers 2003.05114, arXiv.org, revised Mar 2021.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jean-Pierre Amigues & Michel Moreaux & Katheline Schubert, 2011. "Optimal Use of a Polluting Non-Renewable Resource Generating both Manageable and Catastrophic Damages," Annals of Economics and Statistics, GENES, issue 103-104, pages 107-141.
    2. Chakravorty, Ujjayant & Magné, Bertrand & Moreaux, Michel, 2008. "A dynamic model of food and clean energy," Journal of Economic Dynamics and Control, Elsevier, vol. 32(4), pages 1181-1203, April.
    3. Amigues, Jean-Pierre & Moreaux, Michel, 2013. "The atmospheric carbon resilience problem: A theoretical analysis," Resource and Energy Economics, Elsevier, vol. 35(4), pages 618-636.
    4. Chakravorty, Ujjayant & Magné, Bertrand & Moreaux, Michel, 2003. "From Coal to Clean Energy : Hotelling with a Limit on the Stock of Externalities," IDEI Working Papers 229, Institut d'Économie Industrielle (IDEI), Toulouse.
    5. Sandal, Leif K. & Steinshamn, Stein Ivar & Grafton, R. Quentin, 2003. ""More is less": the tax effects of ignoring flow externalities," Resource and Energy Economics, Elsevier, vol. 25(3), pages 239-254, August.
    6. Moreaux, Michel & Withagen, Cees, 2015. "Optimal abatement of carbon emission flows," Journal of Environmental Economics and Management, Elsevier, vol. 74(C), pages 55-70.
    7. Antoine Belgodere, 2009. "On The Path Of An Oil Pigovian Tax," Manchester School, University of Manchester, vol. 77(5), pages 632-649, September.
    8. VARDAR, N. Baris, 2014. "Optimal energy transition and taxation of non-renewable resources," LIDAM Discussion Papers CORE 2014021, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    9. Conrad, Klaus, 2001. "The Optimal Path of Energy and CO2 Taxes for Intertemporal Resource Allocation," Discussion Papers 602, Institut fuer Volkswirtschaftslehre und Statistik, Abteilung fuer Volkswirtschaftslehre.
    10. Grimaud, André & Lafforgue, Gilles & Magné, Bertrand, 2011. "Climate change mitigation options and directed technical change: A decentralized equilibrium analysis," Resource and Energy Economics, Elsevier, vol. 33(4), pages 938-962.
    11. Xiao-Bing Zhang, 2024. "A Dynamic Game of Strategic Carbon Taxation and Energy Pricing with Green Technology Innovation," Dynamic Games and Applications, Springer, vol. 14(4), pages 1027-1055, September.
    12. Wesseh, Presley K. & Lin, Boqiang, 2018. "Optimal carbon taxes for China and implications for power generation, welfare, and the environment," Energy Policy, Elsevier, vol. 118(C), pages 1-8.
    13. Pauli Lappi & Markku Ollikainen, 2019. "Optimal Environmental Policy for a Mine Under Polluting Waste Rocks and Stock Pollution," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 73(1), pages 133-158, May.
    14. Poul Schou, 2000. "Polluting Non-Renewable Resources and Growth," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 16(2), pages 211-227, June.
    15. Chakravorty, Ujjayant & Magne, Bertrand & Moreaux, Michel, 2006. "A Hotelling model with a ceiling on the stock of pollution," Journal of Economic Dynamics and Control, Elsevier, vol. 30(12), pages 2875-2904, December.
    16. Grimaud, André & Rouge, Luc, 2014. "Carbon sequestration, economic policies and growth," Resource and Energy Economics, Elsevier, vol. 36(2), pages 307-331.
    17. Goulder, Lawrence H. & Mathai, Koshy, 2000. "Optimal CO2 Abatement in the Presence of Induced Technological Change," Journal of Environmental Economics and Management, Elsevier, vol. 39(1), pages 1-38, January.
    18. Ngo Van LONG, 2014. "The Green Paradox under Imperfect Substitutability between Clean and Dirty Fuels," Cahiers de recherche 02-2014, Centre interuniversitaire de recherche en économie quantitative, CIREQ.
    19. Amigues, Jean-Pierre & Lafforgue, Gilles & Moreaux, Michel, 2014. "Optimal Timing of Carbon Capture and Storage Policies Under Learning-by-doing," IDEI Working Papers 824, Institut d'Économie Industrielle (IDEI), Toulouse, revised May 2014.
    20. van der Ploeg, Frederick & Withagen, Cees, 2012. "Too much coal, too little oil," Journal of Public Economics, Elsevier, vol. 96(1), pages 62-77.

    More about this item

    Keywords

    Exhaustible resource; CCS; ocean sinks; ocean sequestration; air capture; carbon tax; carbon cycle;
    All these keywords.

    JEL classification:

    • Q32 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Nonrenewable Resources and Conservation - - - Exhaustible Resources and Economic Development
    • Q54 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics - - - Climate; Natural Disasters and their Management; Global Warming
    • C61 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Optimization Techniques; Programming Models; Dynamic Analysis

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:zbw:ifwkwp:1475. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ZBW - Leibniz Information Centre for Economics (email available below). General contact details of provider: https://edirc.repec.org/data/iwkiede.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.