IDEAS home Printed from https://ideas.repec.org/p/zbw/hzvwps/15.html
   My bibliography  Save this paper

Wertorientierte Steuerung von Lebensversicherungsunternehmen mittels stochastischer Prozesse

Author

Listed:
  • Nell, Martin
  • Pohl, Philipp

Abstract

In dieser Arbeit wird das Konzept einer wertorientierten Steuerung von Lebensversicherungsunternehmen basierend auf stochastischen Prozessen vorgestellt. Dabei werden die stochastischen Prozesse dazu verwendet, die zufälligen wertbestimmenden Parameter der Unternehmensbewertung zu modellieren. Als Ergebnis erhält man für den Unternehmenswert Verteilungsfunktionen, die approximativ bzw. exakt in der Klasse der Normalverteilungen liegen. Betrachtet werden dabei stochastische Prozesse in diskreter bzw. stetiger Zeit und mit diskretem bzw. stetigem Zustandsraum.

Suggested Citation

  • Nell, Martin & Pohl, Philipp, 2005. "Wertorientierte Steuerung von Lebensversicherungsunternehmen mittels stochastischer Prozesse," Working Papers on Risk and Insurance 15, University of Hamburg, Institute for Risk and Insurance.
  • Handle: RePEc:zbw:hzvwps:15
    as

    Download full text from publisher

    File URL: https://www.econstor.eu/bitstream/10419/54218/1/680225285.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Cai, Jun & Dickson, David C.M., 2004. "Ruin probabilities with a Markov chain interest model," Insurance: Mathematics and Economics, Elsevier, vol. 35(3), pages 513-525, December.
    2. Goldstein, Alice B & Markowitz, Barbara G, 1982. "SOFASIM: A Dynamic Insurance Model with Investment Structure, Policy Benefits and Taxes," Journal of Finance, American Finance Association, vol. 37(2), pages 595-604, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dhiti Osatakul & Xueyuan Wu, 2021. "Discrete-Time Risk Models with Claim Correlated Premiums in a Markovian Environment," Risks, MDPI, vol. 9(1), pages 1-23, January.
    2. Phung Duy Quang, 2017. "Upper Bounds for Ruin Probability in a Controlled Risk Process under Rates of Interest with Homogenous Markov Chains," Journal of Statistical and Econometric Methods, SCIENPRESS Ltd, vol. 6(3), pages 1-4.
    3. Diasparra, Maikol & Romera, Rosario, 2009. "Inequalities for the ruin probability in a controlled discrete-time risk process," DES - Working Papers. Statistics and Econometrics. WS ws093513, Universidad Carlos III de Madrid. Departamento de Estadística.
    4. Diasparra, M. & Romera, R., 2010. "Inequalities for the ruin probability in a controlled discrete-time risk process," European Journal of Operational Research, Elsevier, vol. 204(3), pages 496-504, August.
    5. Helena Jasiulewicz & Wojciech Kordecki, 2013. "Ruin probability of a discrete-time risk process with proportional reinsurance and investment for exponential and Pareto distributions," Papers 1306.3479, arXiv.org, revised Mar 2015.
    6. Geng, Xianmin & Wang, Ying, 2012. "The compound Pascal model with dividends paid under random interest," Statistics & Probability Letters, Elsevier, vol. 82(7), pages 1331-1336.
    7. Sung Soo Kim & Steve Drekic, 2016. "Ruin Analysis of a Discrete-Time Dependent Sparre Andersen Model with External Financial Activities and Randomized Dividends," Risks, MDPI, vol. 4(1), pages 1-15, February.
    8. Diasparra, Maikol & Romera, Rosario, 2006. "Optimal policies for discrete time risk processes with a Markov chain investment model," DES - Working Papers. Statistics and Econometrics. WS ws062408, Universidad Carlos III de Madrid. Departamento de Estadística.
    9. Tamturk, Muhsin & Utev, Sergey, 2018. "Ruin probability via Quantum Mechanics Approach," Insurance: Mathematics and Economics, Elsevier, vol. 79(C), pages 69-74.
    10. Helena Jasiulewicz & Wojciech Kordecki, 2015. "Ruin probability of a discrete-time risk process with proportional reinsurance and investment for exponential and Pareto distributions," Operations Research and Decisions, Wroclaw University of Science and Technology, Faculty of Management, vol. 25(3), pages 17-38.
    11. Abouzar Bazyari, 2023. "On the Ruin Probabilities in a Discrete Time Insurance Risk Process with Capital Injections and Reinsurance," Sankhya A: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 85(2), pages 1623-1650, August.
    12. Juan González-Hernández & Raquiel López-Martínez & J. Pérez-Hernández, 2007. "Markov control processes with randomized discounted cost," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 65(1), pages 27-44, February.
    13. Ilya Tkachev & Alessandro Abate, 2013. "Computation of ruin probabilities for general discrete-time Markov models," Papers 1308.5152, arXiv.org.
    14. Andreas Karathanasopoulos & Chia Chun Lo & Xiaorong Ma & Zhenjiang Qin, 2021. "Maintaining cost and ruin probability," Review of Quantitative Finance and Accounting, Springer, vol. 57(2), pages 759-793, August.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:zbw:hzvwps:15. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ZBW - Leibniz Information Centre for Economics (email available below). General contact details of provider: https://edirc.repec.org/data/fbhamde.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.