IDEAS home Printed from https://ideas.repec.org/p/zbw/htwlog/1.html
   My bibliography  Save this paper

Comparing classical performance measures for a multi-period, two-echelon supply chain network design problem with sizing decisions

Author

Listed:
  • Correia, Isabel
  • Melo, Teresa
  • Saldanha-da-Gama, Francisco

Abstract

This paper addresses a new problem to design a two-echelon supply chain network over a multi-period horizon. Strategic decisions are subject to a given budget and concern the location of new facilities in the upper and intermediate echelons of the network as well as the installation of storage areas to handle different product families. A finite set of capacity levels for each product family is available at each potential location. Further decisions concern the quantities of products to be shipped through the network. Two mixed-integer linear programming models are proposed that differ in the type of performance measure that is adopted to design the supply chain. Under a cost minimization objective, the network configuration with the least total cost is to be determined. In contrast, under a profit maximization goal the aim is to design the network so as to maximize the difference between total revenue and total cost. In this case, it may not always be attractive to completely satisfy demand requirements. To investigate the implications that the choice of these performance measures have on network design, an extensive computational study is conducted using randomly generated instances that are solved with a general-purpose solver.

Suggested Citation

  • Correia, Isabel & Melo, Teresa & Saldanha-da-Gama, Francisco, 2012. "Comparing classical performance measures for a multi-period, two-echelon supply chain network design problem with sizing decisions," Technical Reports on Logistics of the Saarland Business School 1, Saarland University of Applied Sciences (htw saar), Saarland Business School.
  • Handle: RePEc:zbw:htwlog:1
    as

    Download full text from publisher

    File URL: https://www.econstor.eu/bitstream/10419/98153/1/722231229.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Muppani (Muppant), Venkata Reddy & Adil, Gajendra Kumar, 2008. "A branch and bound algorithm for class based storage location assignment," European Journal of Operational Research, Elsevier, vol. 189(2), pages 492-507, September.
    2. Mazzola, Joseph B. & Neebe, Alan W., 1999. "Lagrangian-relaxation-based solution procedures for a multiproduct capacitated facility location problem with choice of facility type," European Journal of Operational Research, Elsevier, vol. 115(2), pages 285-299, June.
    3. Hasan Pirkul & Vaidyanathan Jayaraman, 1996. "Production, Transportation, and Distribution Planning in a Multi-Commodity Tri-Echelon System," Transportation Science, INFORMS, vol. 30(4), pages 291-302, November.
    4. Melo, M.T. & Nickel, S. & Saldanha-da-Gama, F., 2009. "Facility location and supply chain management - A review," European Journal of Operational Research, Elsevier, vol. 196(2), pages 401-412, July.
    5. Muppani (Muppant), Venkata Reddy & Adil, Gajendra Kumar, 2008. "Efficient formation of storage classes for warehouse storage location assignment: A simulated annealing approach," Omega, Elsevier, vol. 36(4), pages 609-618, August.
    6. Antunes, Antonio & Peeters, Dominique, 2001. "On solving complex multi-period location models using simulated annealing," European Journal of Operational Research, Elsevier, vol. 130(1), pages 190-201, April.
    7. Alexander Shulman, 1991. "An Algorithm for Solving Dynamic Capacitated Plant Location Problems with Discrete Expansion Sizes," Operations Research, INFORMS, vol. 39(3), pages 423-436, June.
    8. Jayaraman, Vaidyanathan & Pirkul, Hasan, 2001. "Planning and coordination of production and distribution facilities for multiple commodities," European Journal of Operational Research, Elsevier, vol. 133(2), pages 394-408, January.
    9. Thanh, Phuong Nga & Bostel, Nathalie & Péton, Olivier, 2008. "A dynamic model for facility location in the design of complex supply chains," International Journal of Production Economics, Elsevier, vol. 113(2), pages 678-693, June.
    10. Meixell, Mary J. & Gargeya, Vidyaranya B., 2005. "Global supply chain design: A literature review and critique," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 41(6), pages 531-550, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Becker, Tristan & Lier, Stefan & Werners, Brigitte, 2019. "Value of modular production concepts in future chemical industry production networks," European Journal of Operational Research, Elsevier, vol. 276(3), pages 957-970.
    2. Correia, Isabel & Melo, Teresa, 2016. "A computational comparison of formulations for a multi-period facility location problem with modular capacity adjustments and flexible demand fulfillment," Technical Reports on Logistics of the Saarland Business School 11, Saarland University of Applied Sciences (htw saar), Saarland Business School.
    3. Sanjay Dominik Jena & Jean-François Cordeau & Bernard Gendron, 2015. "Dynamic Facility Location with Generalized Modular Capacities," Transportation Science, INFORMS, vol. 49(3), pages 484-499, August.
    4. Ariane Kayser & Florian Sahling, 2023. "Relocatable modular capacities in risk aware strategic supply network planning under demand uncertainty," Schmalenbach Journal of Business Research, Springer, vol. 75(1), pages 1-35, March.
    5. Vatsa, Amit Kumar & Jayaswal, Sachin, 2015. "A New Formulation and Benders' Decomposition for Multi-period facility Location Problem with Server Uncertainty," IIMA Working Papers WP2015-02-07, Indian Institute of Management Ahmedabad, Research and Publication Department.
    6. Wu, Tao & Xiao, Fan & Zhang, Canrong & Zhang, Defu & Liang, Zhe, 2019. "Regression and extrapolation guided optimization for production–distribution with ship–buy–exchange options," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 129(C), pages 15-37.
    7. Martins, C. L. & Melo, Teresa & Pato, Margarida Vaz, 2016. "Redesigning a food bank supply chain network, Part I: Background and mathematical formulation," Technical Reports on Logistics of the Saarland Business School 10, Saarland University of Applied Sciences (htw saar), Saarland Business School.
    8. Vatsa, Amit Kumar & Jayaswal, Sachin, 2016. "A new formulation and Benders decomposition for the multi-period maximal covering facility location problem with server uncertainty," European Journal of Operational Research, Elsevier, vol. 251(2), pages 404-418.
    9. Sahling, Florian & Kayser, Ariane, 2016. "Strategic supply network planning with vendor selection under consideration of risk and demand uncertainty," Omega, Elsevier, vol. 59(PB), pages 201-214.
    10. Drexl, Andreas & Klose, Andreas, 2001. "Facility location models for distribution system design," Manuskripte aus den Instituten für Betriebswirtschaftslehre der Universität Kiel 546, Christian-Albrechts-Universität zu Kiel, Institut für Betriebswirtschaftslehre.
    11. Sanjay Dominik Jena & Jean-François Cordeau & Bernard Gendron, 2017. "Lagrangian Heuristics for Large-Scale Dynamic Facility Location with Generalized Modular Capacities," INFORMS Journal on Computing, INFORMS, vol. 29(3), pages 388-404, August.
    12. Güden, Hüseyin & Süral, Haldun, 2014. "Locating mobile facilities in railway construction management," Omega, Elsevier, vol. 45(C), pages 71-79.
    13. Sanjay Jena & Jean-François Cordeau & Bernard Gendron, 2015. "Modeling and solving a logging camp location problem," Annals of Operations Research, Springer, vol. 232(1), pages 151-177, September.
    14. Cortinhal, M. J. & Lopes, M. J. & Melo, M. T., 2014. "Redesigning a three-echelon logistics network over multiple time periods with transportation mode selection and outsourcing opportunities," Technical Reports on Logistics of the Saarland Business School 7, Saarland University of Applied Sciences (htw saar), Saarland Business School.
    15. Correia, Isabel & Melo, Teresa, 2023. "Modeling and solving a dynamic logistics network design problem with temporary capacity expansion and reduction," Technical Reports on Logistics of the Saarland Business School 21, Saarland University of Applied Sciences (htw saar), Saarland Business School.
    16. Zhang, Abraham & Luo, Hao & Huang, George Q., 2013. "A bi-objective model for supply chain design of dispersed manufacturing in China," International Journal of Production Economics, Elsevier, vol. 146(1), pages 48-58.
    17. Klose, Andreas & Drexl, Andreas, 2005. "Facility location models for distribution system design," European Journal of Operational Research, Elsevier, vol. 162(1), pages 4-29, April.
    18. Hammami, R. & Frein, Y., 2014. "Redesign of global supply chains with integration of transfer pricing: Mathematical modeling and managerial insights," International Journal of Production Economics, Elsevier, vol. 158(C), pages 267-277.
    19. Allman, Andrew & Zhang, Qi, 2020. "Dynamic location of modular manufacturing facilities with relocation of individual modules," European Journal of Operational Research, Elsevier, vol. 286(2), pages 494-507.
    20. Melo, M.T. & Nickel, S. & Saldanha-da-Gama, F., 2012. "A tabu search heuristic for redesigning a multi-echelon supply chain network over a planning horizon," International Journal of Production Economics, Elsevier, vol. 136(1), pages 218-230.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:zbw:htwlog:1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ZBW - Leibniz Information Centre for Economics (email available below). General contact details of provider: https://edirc.repec.org/data/fwhsade.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.