IDEAS home Printed from https://ideas.repec.org/a/spr/sjobre/v75y2023i1d10.1007_s41471-022-00141-z.html
   My bibliography  Save this article

Relocatable modular capacities in risk aware strategic supply network planning under demand uncertainty

Author

Listed:
  • Ariane Kayser

    (Leibniz Universität Hannover)

  • Florian Sahling

    (University of Kaiserslautern)

Abstract

We propose a new model formulation for a three-echelon supply network design problem incorporating the concept of relocatable modular capacities. A robust supply network configuration must be determined based on uncertain demand. Furthermore, by incorporating the conditional value at risk (CVaR), the risk induced by uncertain demand is explicitly considered. The derived supply network configuration should maximize the weighted sum of the expected net present value and the CVaR. The resulting nonlinear model formulation is approximated by a piecewise linearization. Our numerical investigation shows that the derived supply network configuration is robust and stable in the presence of uncertain demand.

Suggested Citation

  • Ariane Kayser & Florian Sahling, 2023. "Relocatable modular capacities in risk aware strategic supply network planning under demand uncertainty," Schmalenbach Journal of Business Research, Springer, vol. 75(1), pages 1-35, March.
  • Handle: RePEc:spr:sjobre:v:75:y:2023:i:1:d:10.1007_s41471-022-00141-z
    DOI: 10.1007/s41471-022-00141-z
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s41471-022-00141-z
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1007/s41471-022-00141-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Troncoso, Juan J. & Garrido, Rodrigo A., 2005. "Forestry production and logistics planning: an analysis using mixed-integer programming," Forest Policy and Economics, Elsevier, vol. 7(4), pages 625-633, May.
    2. Jean-François Cordeau & Federico Pasin & Marius Solomon, 2006. "An integrated model for logistics network design," Annals of Operations Research, Springer, vol. 144(1), pages 59-82, April.
    3. Amin Akbari & Ronald Pelot & H. A. Eiselt, 2018. "A modular capacitated multi-objective model for locating maritime search and rescue vessels," Annals of Operations Research, Springer, vol. 267(1), pages 3-28, August.
    4. Sahling, Florian & Kayser, Ariane, 2016. "Strategic supply network planning with vendor selection under consideration of risk and demand uncertainty," Omega, Elsevier, vol. 59(PB), pages 201-214.
    5. AGHEZZAF, El-Houssaine, 2005. "Capacity planning and warehouse location in supply chains with uncertain demands," LIDAM Reprints CORE 1808, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    6. Melachrinoudis, Emanuel & Min, Hokey, 2000. "The dynamic relocation and phase-out of a hybrid, two-echelon plant/warehousing facility: A multiple objective approach," European Journal of Operational Research, Elsevier, vol. 123(1), pages 1-15, May.
    7. Sanjay Jena & Jean-François Cordeau & Bernard Gendron, 2015. "Modeling and solving a logging camp location problem," Annals of Operations Research, Springer, vol. 232(1), pages 151-177, September.
    8. Sang-Bum Lee & Hanan Luss, 1987. "Multifacility-Type Capacity Expansion Planning: Algorithms and Complexities," Operations Research, INFORMS, vol. 35(2), pages 249-253, April.
    9. Silva, Allyson & Aloise, Daniel & Coelho, Leandro C. & Rocha, Caroline, 2021. "Heuristics for the dynamic facility location problem with modular capacities," European Journal of Operational Research, Elsevier, vol. 290(2), pages 435-452.
    10. Melkote, Sanjay & Daskin, Mark S., 2001. "An integrated model of facility location and transportation network design," Transportation Research Part A: Policy and Practice, Elsevier, vol. 35(6), pages 515-538, July.
    11. Antunes, Antonio & Peeters, Dominique, 2001. "On solving complex multi-period location models using simulated annealing," European Journal of Operational Research, Elsevier, vol. 130(1), pages 190-201, April.
    12. Becker, Tristan & Lier, Stefan & Werners, Brigitte, 2019. "Value of modular production concepts in future chemical industry production networks," European Journal of Operational Research, Elsevier, vol. 276(3), pages 957-970.
    13. Sanjay Dominik Jena & Jean-François Cordeau & Bernard Gendron, 2015. "Dynamic Facility Location with Generalized Modular Capacities," Transportation Science, INFORMS, vol. 49(3), pages 484-499, August.
    14. M. Melo & S. Nickel & F. Saldanha-da-Gama, 2014. "An efficient heuristic approach for a multi-period logistics network redesign problem," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 22(1), pages 80-108, April.
    15. Alexander Shulman, 1991. "An Algorithm for Solving Dynamic Capacitated Plant Location Problems with Discrete Expansion Sizes," Operations Research, INFORMS, vol. 39(3), pages 423-436, June.
    16. Melo, M.T. & Nickel, S. & Saldanha-da-Gama, F., 2012. "A tabu search heuristic for redesigning a multi-echelon supply chain network over a planning horizon," International Journal of Production Economics, Elsevier, vol. 136(1), pages 218-230.
    17. Vila, Didier & Martel, Alain & Beauregard, Robert, 2006. "Designing logistics networks in divergent process industries: A methodology and its application to the lumber industry," International Journal of Production Economics, Elsevier, vol. 102(2), pages 358-378, August.
    18. Cortinhal, Maria Joao & Captivo, Maria Eugenia, 2003. "Upper and lower bounds for the single source capacitated location problem," European Journal of Operational Research, Elsevier, vol. 151(2), pages 333-351, December.
    19. Thanh, Phuong Nga & Bostel, Nathalie & Péton, Olivier, 2008. "A dynamic model for facility location in the design of complex supply chains," International Journal of Production Economics, Elsevier, vol. 113(2), pages 678-693, June.
    20. Allman, Andrew & Zhang, Qi, 2020. "Dynamic location of modular manufacturing facilities with relocation of individual modules," European Journal of Operational Research, Elsevier, vol. 286(2), pages 494-507.
    21. Sanjay Dominik Jena & Jean-François Cordeau & Bernard Gendron, 2017. "Lagrangian Heuristics for Large-Scale Dynamic Facility Location with Generalized Modular Capacities," INFORMS Journal on Computing, INFORMS, vol. 29(3), pages 388-404, August.
    22. Hammami, R. & Frein, Y., 2014. "Redesign of global supply chains with integration of transfer pricing: Mathematical modeling and managerial insights," International Journal of Production Economics, Elsevier, vol. 158(C), pages 267-277.
    23. Rockafellar, R. Tyrrell & Uryasev, Stanislav, 2002. "Conditional value-at-risk for general loss distributions," Journal of Banking & Finance, Elsevier, vol. 26(7), pages 1443-1471, July.
    24. E Aghezzaf, 2005. "Capacity planning and warehouse location in supply chains with uncertain demands," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 56(4), pages 453-462, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Silva, Allyson & Aloise, Daniel & Coelho, Leandro C. & Rocha, Caroline, 2021. "Heuristics for the dynamic facility location problem with modular capacities," European Journal of Operational Research, Elsevier, vol. 290(2), pages 435-452.
    2. Correia, Isabel & Melo, Teresa, 2016. "A computational comparison of formulations for a multi-period facility location problem with modular capacity adjustments and flexible demand fulfillment," Technical Reports on Logistics of the Saarland Business School 11, Saarland University of Applied Sciences (htw saar), Saarland Business School.
    3. Allman, Andrew & Zhang, Qi, 2020. "Dynamic location of modular manufacturing facilities with relocation of individual modules," European Journal of Operational Research, Elsevier, vol. 286(2), pages 494-507.
    4. Sahling, Florian & Kayser, Ariane, 2016. "Strategic supply network planning with vendor selection under consideration of risk and demand uncertainty," Omega, Elsevier, vol. 59(PB), pages 201-214.
    5. Fattahi, Mohammad & Mahootchi, Masoud & Govindan, Kannan & Moattar Husseini, Seyed Mohammad, 2015. "Dynamic supply chain network design with capacity planning and multi-period pricing," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 81(C), pages 169-202.
    6. M. Fattahi & M. Mahootchi & S. M. Moattar Husseini, 2016. "Integrated strategic and tactical supply chain planning with price-sensitive demands," Annals of Operations Research, Springer, vol. 242(2), pages 423-456, July.
    7. Correia, Isabel & Melo, Teresa, 2023. "Modeling and solving a dynamic logistics network design problem with temporary capacity expansion and reduction," Technical Reports on Logistics of the Saarland Business School 21, Saarland University of Applied Sciences (htw saar), Saarland Business School.
    8. Melo, M.T. & Nickel, S. & Saldanha-da-Gama, F., 2009. "Facility location and supply chain management - A review," European Journal of Operational Research, Elsevier, vol. 196(2), pages 401-412, July.
    9. Becker, Tristan & Lier, Stefan & Werners, Brigitte, 2019. "Value of modular production concepts in future chemical industry production networks," European Journal of Operational Research, Elsevier, vol. 276(3), pages 957-970.
    10. Cortinhal, M. J. & Lopes, M. J. & Melo, M. T., 2014. "Redesigning a three-echelon logistics network over multiple time periods with transportation mode selection and outsourcing opportunities," Technical Reports on Logistics of the Saarland Business School 7, Saarland University of Applied Sciences (htw saar), Saarland Business School.
    11. Puntipa Punyim & Ampol Karoonsoontawong & Avinash Unnikrishnan & Vatanavongs Ratanavaraha, 2022. "A Heuristic for the Two-Echelon Multi-Period Multi-Product Location–Inventory Problem with Partial Facility Closing and Reopening," Sustainability, MDPI, vol. 14(17), pages 1-32, August.
    12. Tang, Lianhua & Li, Yantong & Bai, Danyu & Liu, Tao & Coelho, Leandro C., 2022. "Bi-objective optimization for a multi-period COVID-19 vaccination planning problem," Omega, Elsevier, vol. 110(C).
    13. M. Melo & S. Nickel & F. Saldanha-da-Gama, 2014. "An efficient heuristic approach for a multi-period logistics network redesign problem," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 22(1), pages 80-108, April.
    14. Corberán, Ángel & Landete, Mercedes & Peiró, Juanjo & Saldanha-da-Gama, Francisco, 2020. "The facility location problem with capacity transfers," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 138(C).
    15. Melo, M.T. & Nickel, S. & Saldanha-da-Gama, F., 2012. "A tabu search heuristic for redesigning a multi-echelon supply chain network over a planning horizon," International Journal of Production Economics, Elsevier, vol. 136(1), pages 218-230.
    16. Thanh, Phuong Nga & Bostel, Nathalie & Péton, Olivier, 2012. "A DC programming heuristic applied to the logistics network design problem," International Journal of Production Economics, Elsevier, vol. 135(1), pages 94-105.
    17. Thanh, Phuong Nga & Bostel, Nathalie & Péton, Olivier, 2008. "A dynamic model for facility location in the design of complex supply chains," International Journal of Production Economics, Elsevier, vol. 113(2), pages 678-693, June.
    18. Marković, Nikola & Ryzhov, Ilya O. & Schonfeld, Paul, 2017. "Evasive flow capture: A multi-period stochastic facility location problem with independent demand," European Journal of Operational Research, Elsevier, vol. 257(2), pages 687-703.
    19. Correia, Isabel & Melo, Teresa & Saldanha-da-Gama, Francisco, 2012. "Comparing classical performance measures for a multi-period, two-echelon supply chain network design problem with sizing decisions," Technical Reports on Logistics of the Saarland Business School 1, Saarland University of Applied Sciences (htw saar), Saarland Business School.
    20. Correia, Isabel & Melo, Teresa, 2019. "Dynamic facility location problem with modular capacity adjustments under uncertainty," Technical Reports on Logistics of the Saarland Business School 17, Saarland University of Applied Sciences (htw saar), Saarland Business School.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:sjobre:v:75:y:2023:i:1:d:10.1007_s41471-022-00141-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.