IDEAS home Printed from https://ideas.repec.org/p/zbw/forlwp/304301.html
   My bibliography  Save this paper

The effect of land fragmentation on risk and technical efficiency of crop farms

Author

Listed:
  • Eder, Andreas

Abstract

Using a 2007-2014 panel of Austrian crop farms, we analyze the effect of multiple dimensions of land fragmentation on farms' production efficiency and risk performance. We use Data Envelopment Analysis (DEA), a non-parametric linear programming approach, to estimate efficiencies. Technical efficiency is decomposed into i) scale efficiency, ii) pure technical efficiency, and iii) input-mix efficiency. Risk efficiency, a concept borrowed from modern portfolio theory, measures the performance of a farm relative to a mean-variance frontier. A second-stage DEA analysis reveals that farms with fewer plots and a shorter average farmstead to plot distance tend to be more technically efficient. Larger plots allow for better exploitation of returns to scale. The scattering of plots has no statistically significant effect on technical efficiency but provides benefits in terms of higher risk efficiency. Land consolidation projects should carefully weigh the costs and benefits associated with different dimensions of land fragmentation.

Suggested Citation

  • Eder, Andreas, 2024. "The effect of land fragmentation on risk and technical efficiency of crop farms," FORLand Working Papers 31 (2024), Humboldt University Berlin, DFG Research Unit 2569 FORLand "Agricultural Land Markets – Efficiency and Regulation".
  • Handle: RePEc:zbw:forlwp:304301
    DOI: 10.18452/29095
    as

    Download full text from publisher

    File URL: https://www.econstor.eu/bitstream/10419/304301/1/1905338600.pdf
    Download Restriction: no

    File URL: https://libkey.io/10.18452/29095?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Niskanen, Olli & Heikkilä, Anna-Maija, 2015. "The Impact of Parcel Structure on the Efficiency of Finnish Dairy Farms," Agricultural and Resource Economics Review, Northeastern Agricultural and Resource Economics Association, vol. 44(1), pages 1-13, April.
    2. Nguyen, Tin & Cheng, Enjiang & Findlay, Christopher, 1996. "Land fragmentation and farm productivity in China in the 1990s," China Economic Review, Elsevier, vol. 7(2), pages 169-180.
    3. Simar, Leopold & Wilson, Paul W., 2007. "Estimation and inference in two-stage, semi-parametric models of production processes," Journal of Econometrics, Elsevier, vol. 136(1), pages 31-64, January.
    4. Tone, Kaoru, 2001. "A slacks-based measure of efficiency in data envelopment analysis," European Journal of Operational Research, Elsevier, vol. 130(3), pages 498-509, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Franz R. Hahn, 2007. "Determinants of Bank Efficiency in Europe. Assessing Bank Performance Across Markets," WIFO Studies, WIFO, number 31499, April.
    2. Junlong Li & Chuangneng Cai & Feng Zhang, 2020. "Assessment of Ecological Efficiency and Environmental Sustainability of the Minjiang-Source in China," Sustainability, MDPI, vol. 12(11), pages 1-15, June.
    3. Muliaman Hadad & Maximilian Hall & Karligash Kenjegalieva & Wimboh Santoso & Richard Simper, 2011. "Banking efficiency and stock market performance: an analysis of listed Indonesian banks," Review of Quantitative Finance and Accounting, Springer, vol. 37(1), pages 1-20, July.
    4. Chen, Kuan-Chen & Lin, Sun-Yuan & Yu, Ming-Miin, 2022. "Exploring the efficiency of hospital and pharmacy utilizations in Taiwan: An application of dynamic network data envelopment analysis," Socio-Economic Planning Sciences, Elsevier, vol. 84(C).
    5. Jo, Ah-Hyun & Chang, Young-Tae, 2023. "The effect of airport efficiency on air traffic, using DEA and multilateral resistance terms gravity models," Journal of Air Transport Management, Elsevier, vol. 108(C).
    6. Frederick, Joshua D. & Fung, Derrick W.H. & Yang, Charles C. & Yeh, Jason J.H., 2022. "Individual health insurance reforms in the U.S.: Expanding interstate markets, Medicare for all, or Medicaid for all?," European Journal of Operational Research, Elsevier, vol. 297(2), pages 753-765.
    7. Tao Liu & Jixia Li & Juan Chen & Shaolei Yang, 2019. "Urban Ecological Efficiency and Its Influencing Factors—A Case Study in Henan Province, China," Sustainability, MDPI, vol. 11(18), pages 1-20, September.
    8. Bingquan Liu & Yongqing Li & Rui Hou & Hui Wang, 2019. "Does Urbanization Improve Industrial Water Consumption Efficiency?," Sustainability, MDPI, vol. 11(6), pages 1-17, March.
    9. María-Celia López-Penabad & José Manuel Maside-Sanfiz & Juan Torrelles-Manent & Carmen López-Andión, 2021. "Performance Evaluation of Sheltered Workshops. Does Legal Status Matter?," Sustainability, MDPI, vol. 13(3), pages 1-18, January.
    10. José Solana-Ibáñez & Manuel Caravaca-Garratón & Lorena Para-González, 2016. "Two-Stage Data Envelopment Analysis of Spanish Regions: Efficiency Determinants and Stability Analysis," Contemporary Economics, University of Economics and Human Sciences in Warsaw., vol. 10(3), September.
    11. Jindal, Abhinav & Nilakantan, Rahul, 2021. "Falling efficiency levels of Indian coal-fired power plants: A slacks-based analysis," Energy Economics, Elsevier, vol. 93(C).
    12. Veronese da Silva, Aline & Costa, Marcelo Azevedo & Lopes-Ahn, Ana Lúcia, 2022. "Accounting multiple environmental variables in DEA energy transmission benchmarking modelling: The 2019 Brazilian case," Socio-Economic Planning Sciences, Elsevier, vol. 80(C).
    13. Mahmoudi, Reza & Emrouznejad, Ali & Shetab-Boushehri, Seyyed-Nader & Hejazi, Seyed Reza, 2020. "The origins, development and future directions of data envelopment analysis approach in transportation systems," Socio-Economic Planning Sciences, Elsevier, vol. 69(C).
    14. Aparicio, Juan & Cordero, Jose M. & Gonzalez, Martin & Lopez-Espin, Jose J., 2018. "Using non-radial DEA to assess school efficiency in a cross-country perspective: An empirical analysis of OECD countries," Omega, Elsevier, vol. 79(C), pages 9-20.
    15. Wu, Yueh-Cheng & Lin, Sheng-Wei, 2022. "Efficiency evaluation of Asia's cultural tourism using a dynamic DEA approach," Socio-Economic Planning Sciences, Elsevier, vol. 84(C).
    16. Berger, Michael & Sommersguter-Reichmann, Margit & Czypionka, Thomas, 2020. "Determinants of soft budget constraints: how public debt affects hospital performance in Austria," LSE Research Online Documents on Economics 116865, London School of Economics and Political Science, LSE Library.
    17. Xie, Bai-Chen & Shang, Li-Feng & Yang, Si-Bo & Yi, Bo-Wen, 2014. "Dynamic environmental efficiency evaluation of electric power industries: Evidence from OECD (Organization for Economic Cooperation and Development) and BRIC (Brazil, Russia, India and China) countrie," Energy, Elsevier, vol. 74(C), pages 147-157.
    18. Walheer, Barnabé, 2018. "Economic growth and greenhouse gases in Europe: A non-radial multi-sector nonparametric production-frontier analysis," Energy Economics, Elsevier, vol. 74(C), pages 51-62.
    19. Ioannis E. Tsolas, 2020. "Financial Performance Assessment of Construction Firms by Means of RAM-Based Composite Indicators," Mathematics, MDPI, vol. 8(8), pages 1-16, August.
    20. Li, Lan-Bing & Hu, Jin-Li, 2012. "Ecological total-factor energy efficiency of regions in China," Energy Policy, Elsevier, vol. 46(C), pages 216-224.

    More about this item

    Keywords

    Land consolidation; Farmland fragmentation; Economies of scale; Agriculturalproductivity; Risk management; Data Envelopment Analysis;
    All these keywords.

    JEL classification:

    • Q12 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Agriculture - - - Micro Analysis of Farm Firms, Farm Households, and Farm Input Markets
    • Q15 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Agriculture - - - Land Ownership and Tenure; Land Reform; Land Use; Irrigation; Agriculture and Environment
    • Q18 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Agriculture - - - Agricultural Policy; Food Policy; Animal Welfare Policy

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:zbw:forlwp:304301. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ZBW - Leibniz Information Centre for Economics (email available below). General contact details of provider: https://edirc.repec.org/data/iahubde.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.