IDEAS home Printed from https://ideas.repec.org/p/zbw/fisisi/s192018.html
   My bibliography  Save this paper

Techno-economic modelling of low-voltage networks: A concept to determine the grid investment required in Germany and the implications for grid utilisation fees

Author

Listed:
  • Marwitz, Simon
  • Elsland, Rainer

Abstract

The increasing deployment of decentralised rooftop photovoltaic systems (PV systems) and the expected future diffusion of plug-in electric vehicles (PEVs) can have a major influence on the need to expand low-voltage networks in the near future. The associated grid investments are refinanced via grid utilisation fees (GUF). Some of the GUF are passed on from higher to lower voltage lev-els. At the same time, decentralised electricity generation from PV systems is currently exempt from paying GUF in Germany. This study determines the grid investment required based on the example of a low-voltage network in a suburb and the underlying change in electricity demand used to refinance the grid in-vestment. A newly developed modelling concept is introduced to do so. The analysis focuses on the German household sector for the year 2030. Key find-ings from the analysis are that the future penetration of PV systems and the charging capacity of PEVs will have a considerable influence on maximum grid loads and the associated investment requirements. The required grid invest-ment mainly concerns additional lines or (adjustable) local grid transformers. Furthermore, the analysis shows a direct correlation between the self-consumption of decentrally generated power, the increased electricity demand due to PEVs and the required grid investment. This shows that additional grid investment is required from an average penetration rate of 0.5 kW PEV inverter power output per person and 1 kWp installed PV capacity per person in the lo-cal network area. At the same time, GUF can be reduced due to the increase in electricity demand by PEVs. Correspondingly, PV systems reduce the amount of power withdrawn from the grid, which means the specific GUF could increase by up to 2.1 eurocent per kWh by 2030 under the current surcharge mecha-nism. Households with an electric vehicle but without a photovoltaic system contribute roughly four times as much to refinancing the electric grids as com-parable households without an electric vehicle but with a photovoltaic system do.

Suggested Citation

  • Marwitz, Simon & Elsland, Rainer, 2018. "Techno-economic modelling of low-voltage networks: A concept to determine the grid investment required in Germany and the implications for grid utilisation fees," Working Papers "Sustainability and Innovation" S19/2018, Fraunhofer Institute for Systems and Innovation Research (ISI).
  • Handle: RePEc:zbw:fisisi:s192018
    as

    Download full text from publisher

    File URL: https://www.econstor.eu/bitstream/10419/184725/1/1040219527.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Klingler, Anna-Lena, 2017. "Self-consumption with PV+Battery systems: A market diffusion model considering individual consumer behaviour and preferences," Applied Energy, Elsevier, vol. 205(C), pages 1560-1570.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Günther, Claudia & Schill, Wolf-Peter & Zerrahn, Alexander, 2021. "Prosumage of solar electricity: Tariff design, capacity investments, and power sector effects," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 152.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Angenendt, Georg & Zurmühlen, Sebastian & Axelsen, Hendrik & Sauer, Dirk Uwe, 2018. "Comparison of different operation strategies for PV battery home storage systems including forecast-based operation strategies," Applied Energy, Elsevier, vol. 229(C), pages 884-899.
    2. Freier, Julia & von Loessl, Victor, 2022. "Dynamic electricity tariffs: Designing reasonable pricing schemes for private households," Energy Economics, Elsevier, vol. 112(C).
    3. Georg Göhler & Anna-Lena Klingler & Florian Klausmann & Dieter Spath, 2021. "Integrated Modelling of Decentralised Energy Supply in Combination with Electric Vehicle Charging in a Real-Life Case Study," Energies, MDPI, vol. 14(21), pages 1-19, October.
    4. Villa-Arrieta, Manuel & Sumper, Andreas, 2019. "Economic evaluation of Nearly Zero Energy Cities," Applied Energy, Elsevier, vol. 237(C), pages 404-416.
    5. Jura Arkhangelski & Pedro Roncero-Sánchez & Mahamadou Abdou-Tankari & Javier Vázquez & Gilles Lefebvre, 2019. "Control and Restrictions of a Hybrid Renewable Energy System Connected to the Grid: A Battery and Supercapacitor Storage Case," Energies, MDPI, vol. 12(14), pages 1-23, July.
    6. Stute, Judith & Klobasa, Marian, 2024. "How do dynamic electricity tariffs and different grid charge designs interact? - Implications for residential consumers and grid reinforcement requirements," Energy Policy, Elsevier, vol. 189(C).
    7. Fett, Daniel & Fraunholz, Christoph & Keles, Dogan, 2021. "Diffusion and system impact of residential battery storage under different regulatory settings," Energy Policy, Elsevier, vol. 158(C).
    8. Nousdilis, Angelos I. & Christoforidis, Georgios C. & Papagiannis, Grigoris K., 2018. "Active power management in low voltage networks with high photovoltaics penetration based on prosumers’ self-consumption," Applied Energy, Elsevier, vol. 229(C), pages 614-624.
    9. Charlotte Senkpiel & Audrey Dobbins & Christina Kockel & Jan Steinbach & Ulrich Fahl & Farina Wille & Joachim Globisch & Sandra Wassermann & Bert Droste-Franke & Wolfgang Hauser & Claudia Hofer & Lars, 2020. "Integrating Methods and Empirical Findings from Social and Behavioural Sciences into Energy System Models—Motivation and Possible Approaches," Energies, MDPI, vol. 13(18), pages 1-30, September.
    10. Klingler, Anna-Lena, 2018. "The effect of electric vehicles and heat pumps on the market potential of PV + battery systems," Energy, Elsevier, vol. 161(C), pages 1064-1073.
    11. Chatzisideris, Marios D. & Ohms, Pernille K. & Espinosa, Nieves & Krebs, Frederik C. & Laurent, Alexis, 2019. "Economic and environmental performances of organic photovoltaics with battery storage for residential self-consumption," Applied Energy, Elsevier, vol. 256(C).
    12. Schwarz, Marius & Auzépy, Quentin & Knoeri, Christof, 2020. "Can electricity pricing leverage electric vehicles and battery storage to integrate high shares of solar photovoltaics?," Applied Energy, Elsevier, vol. 277(C).
    13. Rémy Rigo-Mariani & Alim Yakub, 2024. "Decision Tree Variations and Online Tuning for Real-Time Control of a Building in a Two-Stage Management Strategy," Energies, MDPI, vol. 17(11), pages 1-17, June.
    14. Aniello, Gianmarco & Shamon, Hawal & Kuckshinrichs, Wilhelm, 2021. "Micro-economic assessment of residential PV and battery systems: The underrated role of financial and fiscal aspects," Applied Energy, Elsevier, vol. 281(C).
    15. Kühnbach, Matthias & Pisula, Stefan & Bekk, Anke & Weidlich, Anke, 2020. "How much energy autonomy can decentralised photovoltaic generation provide? A case study for Southern Germany," Applied Energy, Elsevier, vol. 280(C).
    16. Florian Klausmann & Anna-Lena Klingler, 2023. "Adaptive Control Strategy for Stationary Electric Battery Storage Systems with Reliable Peak Load Limitation at Maximum Self-Consumption of Locally Generated Energy," Energies, MDPI, vol. 16(9), pages 1-19, May.
    17. Alipour, Mohammad & Taghikhah, Firouzeh & Irannezhad, Elnaz & Stewart, Rodney A. & Sahin, Oz, 2022. "How the decision to accept or reject PV affects the behaviour of residential battery system adopters," Applied Energy, Elsevier, vol. 318(C).
    18. Tang, Hong & Wang, Shengwei & Li, Hangxin, 2021. "Flexibility categorization, sources, capabilities and technologies for energy-flexible and grid-responsive buildings: State-of-the-art and future perspective," Energy, Elsevier, vol. 219(C).
    19. Barbour, Edward & González, Marta C., 2018. "Projecting battery adoption in the prosumer era," Applied Energy, Elsevier, vol. 215(C), pages 356-370.
    20. Olivella, Jordi & Domenech, Bruno & Calleja, Gema, 2021. "Potential of implementation of residential photovoltaics at city level: The case of London," Renewable Energy, Elsevier, vol. 180(C), pages 577-585.

    More about this item

    Keywords

    electric vehicle (PEV); rooftop photovoltaic system;

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:zbw:fisisi:s192018. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ZBW - Leibniz Information Centre for Economics (email available below). General contact details of provider: https://edirc.repec.org/data/isfhgde.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.