IDEAS home Printed from https://ideas.repec.org/p/zbw/faucse/452002.html
   My bibliography  Save this paper

Classes of skew generalized hyperbolic secant distributions

Author

Listed:
  • Fischer, Matthias J.
  • Vaughan, David

Abstract

A generalization of the hyperbolic secant distribution which allows both for skewness and for leptokurtosis was given by Morris (1982). Recently, Vaughan (2002) proposed another flexible generalization of the hyperbolic secant distribution which has a lot of nice properties but is not able to allow for skewness. For that reason, we additionally introduce a skewness parameter by means of splitting the scale parameter and show that most of the nice properties are preserved. Finally, we compare both families with respect to their ability to model financial return distributions.

Suggested Citation

  • Fischer, Matthias J. & Vaughan, David, 2002. "Classes of skew generalized hyperbolic secant distributions," Discussion Papers 45/2002, Friedrich-Alexander University Erlangen-Nuremberg, Chair of Statistics and Econometrics.
  • Handle: RePEc:zbw:faucse:452002
    as

    Download full text from publisher

    File URL: https://www.econstor.eu/bitstream/10419/29626/1/614040515.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. McDonald, James B., 1991. "Parametric models for partially adaptive estimation with skewed and leptokurtic residuals," Economics Letters, Elsevier, vol. 37(3), pages 273-278, November.
    2. Stefan Mittnik & Marc Paolella & Svetlozar Rachev, 1998. "Unconditional and Conditional Distributional Models for the Nikkei Index," Asia-Pacific Financial Markets, Springer;Japanese Association of Financial Economics and Engineering, vol. 5(2), pages 99-128, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hakan Savaş Sazak & Melis Zeybek, 2022. "The modified maximum likelihood estimators for the parameters of the regression model under bivariate median ranked set sampling," Computational Statistics, Springer, vol. 37(3), pages 1069-1109, July.
    2. Klein, Ingo & Fischer, Matthias J., 2003. "Skewness by splitting the scale parameter," Discussion Papers 55/2003, Friedrich-Alexander University Erlangen-Nuremberg, Chair of Statistics and Econometrics.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fischer, Matthias J., 2000. "The folded EGB2 distribution and its application to financial return data," Discussion Papers 32/2000, Friedrich-Alexander University Erlangen-Nuremberg, Chair of Statistics and Econometrics.
    2. Fischer, Matthias J., 2002. "Skew generalized secant hyperbolic distributions: unconditional and conditional fit to asset returns," Discussion Papers 46/2002, Friedrich-Alexander University Erlangen-Nuremberg, Chair of Statistics and Econometrics.
    3. Markus Haas & Stefan Mittnik & Marc Paolella, 2006. "Modelling and predicting market risk with Laplace-Gaussian mixture distributions," Applied Financial Economics, Taylor & Francis Journals, vol. 16(15), pages 1145-1162.
    4. Massing, Till & Puente-Ajovín, Miguel & Ramos, Arturo, 2020. "On the parametric description of log-growth rates of cities’ sizes of four European countries and the USA," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 551(C).
    5. Luca Bagnato & Valerio Potì & Maria Zoia, 2015. "The role of orthogonal polynomials in adjusting hyperpolic secant and logistic distributions to analyse financial asset returns," Statistical Papers, Springer, vol. 56(4), pages 1205-1234, November.
    6. Jing-Yi Lai, 2012. "An empirical study of the impact of skewness and kurtosis on hedging decisions," Quantitative Finance, Taylor & Francis Journals, vol. 12(12), pages 1827-1837, December.
    7. Kai-Li Wang & Christopher Fawson & Christopher B. Barrett & James B. McDonald, 2001. "A flexible parametric GARCH model with an application to exchange rates," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 16(4), pages 521-536.
    8. José Dias Curto & João Tomaz & José Castro Pinto, 2009. "A new approach to bad news effects on volatility: the multiple-sign-volume sensitive regime EGARCH model (MSV-EGARCH)," Portuguese Economic Journal, Springer;Instituto Superior de Economia e Gestao, vol. 8(1), pages 23-36, April.
    9. Cees Diks & Valentyn Panchenko & Dick van Dijk, 2008. "Partial Likelihood-Based Scoring Rules for Evaluating Density Forecasts in Tails," Tinbergen Institute Discussion Papers 08-050/4, Tinbergen Institute.
    10. Choi, Pilsun & Nam, Kiseok, 2008. "Asymmetric and leptokurtic distribution for heteroscedastic asset returns: The SU-normal distribution," Journal of Empirical Finance, Elsevier, vol. 15(1), pages 41-63, January.
    11. Diks, Cees & Panchenko, Valentyn & van Dijk, Dick, 2011. "Likelihood-based scoring rules for comparing density forecasts in tails," Journal of Econometrics, Elsevier, vol. 163(2), pages 215-230, August.
    12. Fabio Pizzutilo, 2013. "The Distribution of the Returns of Japanese Stocks and Portfolios," Asian Economic and Financial Review, Asian Economic and Social Society, vol. 3(9), pages 1249-1259, September.
    13. Blattenberger, Gail & Fowles, Richard, 1995. "Road closure to mitigate avalanche danger: a case study for Little Cottonwood Canyon," International Journal of Forecasting, Elsevier, vol. 11(1), pages 159-174, March.
    14. Richard Harris & C. Coskun Kucukozmen & Fatih Yilmaz, 2004. "Skewness in the conditional distribution of daily equity returns," Applied Financial Economics, Taylor & Francis Journals, vol. 14(3), pages 195-202.
    15. Markus Haas, 2004. "Mixed Normal Conditional Heteroskedasticity," Journal of Financial Econometrics, Oxford University Press, vol. 2(2), pages 211-250.
    16. Sung Ik Kim, 2022. "ARMA–GARCH model with fractional generalized hyperbolic innovations," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 8(1), pages 1-25, December.
    17. Usta, Ilhan & Kantar, Yeliz Mert, 2011. "On the performance of the flexible maximum entropy distributions within partially adaptive estimation," Computational Statistics & Data Analysis, Elsevier, vol. 55(6), pages 2172-2182, June.
    18. Marc S. Paolella, 2016. "Stable-GARCH Models for Financial Returns: Fast Estimation and Tests for Stability," Econometrics, MDPI, vol. 4(2), pages 1-28, May.
    19. Fischer, Matthias J. & Horn, Armin & Klein, Ingo, 2003. "Tukey-type distributions in the context of financial data," Discussion Papers 52/2003, Friedrich-Alexander University Erlangen-Nuremberg, Chair of Statistics and Econometrics.
    20. Gel, Yulia R., 2010. "Test of fit for a Laplace distribution against heavier tailed alternatives," Computational Statistics & Data Analysis, Elsevier, vol. 54(4), pages 958-965, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:zbw:faucse:452002. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ZBW - Leibniz Information Centre for Economics (email available below). General contact details of provider: https://edirc.repec.org/data/vierlde.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.