IDEAS home Printed from https://ideas.repec.org/p/zbw/esprep/253660.html
   My bibliography  Save this paper

A Practical Review of Methods to Estimate Overcharges using Linear Regression

Author

Listed:
  • Inderst, Roman
  • Milde, Christopher

Abstract

Arguably the most widely used techniques for estimating price overcharges from competition law infringements are the dummy variable and the forecasting approaches using linear regression analysis. While rarely used in practice, in this note we make use of the fully interacted dummy variable approach to review some basic properties of all three approaches. We show under which conditions and for which estimands of interest these approaches are equivalent and when they differ. We also note some interesting additional choices an interaction approach allows.

Suggested Citation

  • Inderst, Roman & Milde, Christopher, 2019. "A Practical Review of Methods to Estimate Overcharges using Linear Regression," EconStor Preprints 253660, ZBW - Leibniz Information Centre for Economics.
  • Handle: RePEc:zbw:esprep:253660
    as

    Download full text from publisher

    File URL: https://www.econstor.eu/bitstream/10419/253660/1/inderst_milde_2018%20%281%29.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Salkever, David S., 1976. "The use of dummy variables to compute predictions, prediction errors, and confidence intervals," Journal of Econometrics, Elsevier, vol. 4(4), pages 393-397, November.
    2. Higgins, Richard S. & Johnson, Paul A., 2003. "The mean effect of structural change on the dependent variable is accurately measured by the intercept change alone," Economics Letters, Elsevier, vol. 80(2), pages 255-259, August.
    3. White, Halbert, 2006. "Time-series estimation of the effects of natural experiments," Journal of Econometrics, Elsevier, vol. 135(1-2), pages 527-566.
    4. Imbens,Guido W. & Rubin,Donald B., 2015. "Causal Inference for Statistics, Social, and Biomedical Sciences," Cambridge Books, Cambridge University Press, number 9780521885881.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. McCrary Justin & Rubinfeld Daniel L., 2014. "Measuring Benchmark Damages in Antitrust Litigation," Journal of Econometric Methods, De Gruyter, vol. 3(1), pages 63-74, January.
    2. Hao, Shiming, 2021. "True structure change, spurious treatment effect? A novel approach to disentangle treatment effects from structure changes," MPRA Paper 108679, University Library of Munich, Germany.
    3. Dimitris Bertsimas & Agni Orfanoudaki & Rory B. Weiner, 2020. "Personalized treatment for coronary artery disease patients: a machine learning approach," Health Care Management Science, Springer, vol. 23(4), pages 482-506, December.
    4. Clément de Chaisemartin & Jaime Ramirez-Cuellar, 2024. "At What Level Should One Cluster Standard Errors in Paired and Small-Strata Experiments?," American Economic Journal: Applied Economics, American Economic Association, vol. 16(1), pages 193-212, January.
    5. Clément de Chaisemartin & Luc Behaghel, 2020. "Estimating the Effect of Treatments Allocated by Randomized Waiting Lists," Econometrica, Econometric Society, vol. 88(4), pages 1453-1477, July.
    6. Bruno Ferman & Cristine Pinto & Vitor Possebom, 2020. "Cherry Picking with Synthetic Controls," Journal of Policy Analysis and Management, John Wiley & Sons, Ltd., vol. 39(2), pages 510-532, March.
    7. Peydró, José-Luis & Jiménez, Gabriel & Kenan, Huremovic & Moral-Benito, Enrique & Vega-Redondo, Fernando, 2020. "Production and financial networks in interplay: Crisis evidence from supplier-customer and credit registers," CEPR Discussion Papers 15277, C.E.P.R. Discussion Papers.
    8. Marie Bjørneby & Annette Alstadsæter & Kjetil Telle, 2018. "Collusive tax evasion by employers and employees. Evidence from a randomized fi eld experiment in Norway," Discussion Papers 891, Statistics Norway, Research Department.
    9. Davide Viviano & Jelena Bradic, 2019. "Synthetic learner: model-free inference on treatments over time," Papers 1904.01490, arXiv.org, revised Aug 2022.
    10. Chenchuan (Mark) Li & Ulrich K. Müller, 2021. "Linear regression with many controls of limited explanatory power," Quantitative Economics, Econometric Society, vol. 12(2), pages 405-442, May.
    11. Jeon, Sung-Hee & Pohl, R. Vincent, 2019. "Medical innovation, education, and labor market outcomes of cancer patients," Journal of Health Economics, Elsevier, vol. 68(C).
    12. Johnsen, Åshild A. & Kvaløy, Ola, 2021. "Conspiracy against the public - An experiment on collusion11“People of the same trade seldom meet together, even for merriment and diversion, but the conversation ends in a conspiracy against the publ," Journal of Behavioral and Experimental Economics (formerly The Journal of Socio-Economics), Elsevier, vol. 94(C).
    13. Pedro H. C. Sant'Anna & Xiaojun Song & Qi Xu, 2022. "Covariate distribution balance via propensity scores," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 37(6), pages 1093-1120, September.
    14. Neil R. Ericsson, 2021. "Dynamic Econometrics in Action: A Biography of David F. Hendry," International Finance Discussion Papers 1311, Board of Governors of the Federal Reserve System (U.S.).
    15. Sung Jae Jun & Sokbae Lee, 2024. "Causal Inference Under Outcome-Based Sampling with Monotonicity Assumptions," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 42(3), pages 998-1009, July.
    16. Caloffi, Annalisa & Freo, Marzia & Ghinoi, Stefano & Mariani, Marco & Rossi, Federica, 2022. "Assessing the effects of a deliberate policy mix: The case of technology and innovation advisory services and innovation vouchers," Research Policy, Elsevier, vol. 51(6).
    17. Reizer, Balázs, 2022. "Employment and Wage Consequences of Flexible Wage Components," Labour Economics, Elsevier, vol. 78(C).
    18. Jiannan Lu & Peng Ding & Tirthankar Dasgupta, 2018. "Treatment Effects on Ordinal Outcomes: Causal Estimands and Sharp Bounds," Journal of Educational and Behavioral Statistics, , vol. 43(5), pages 540-567, October.
    19. Matilde Cappelletti & Leonardo M. Giuffrida, 2024. "Targeted Bidders in Government Tenders," CESifo Working Paper Series 11142, CESifo.
    20. Art B. Owen & Hal Varian, 2018. "Optimizing the tie-breaker regression discontinuity design," Papers 1808.07563, arXiv.org, revised Jul 2020.

    More about this item

    JEL classification:

    • K13 - Law and Economics - - Basic Areas of Law - - - Tort Law and Product Liability; Forensic Economics
    • C20 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:zbw:esprep:253660. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ZBW - Leibniz Information Centre for Economics (email available below). General contact details of provider: https://edirc.repec.org/data/zbwkide.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.