IDEAS home Printed from https://ideas.repec.org/p/zbw/esprep/179426.html
   My bibliography  Save this paper

Electrophysiological Precursor of Information Cascade: Evidence from N200

Author

Listed:
  • Li, Jianbiao
  • Niu, Xiaofei
  • Zhu, Chengkang
  • Wang, Guangrong
  • Cao, Qian
  • Li, Shuaiqi
  • Liu, Xiaoli
  • Wang, Pengcheng

Abstract

When a sequence of decision makers with private information announce public predictions, initial conformity can create an information cascade in which all future decision makers will rationally match the early announcements and disregard private information. This study uses event-related potentials (ERPs) to compare the time course of neural activities associated with information cascade during sequential decision-making. In our experiment, a participant receives a private signal matched with public information in the congruent condition, while in the incongruent condition he or she receives a private signal against the public information. The results show that the conflict between private and public information triggers a more negative deflection peaking around 300 ms, with a right frontal scalp distribution similar to N200. Importantly, the N200 effect is negatively correlated with information cascade. These results add to the growing literature on neuronal mechanisms of information cascades by disentangling cognitive control related processes in inhibiting overweighting private information and the neural signal of a cascade in sequential decision-making.

Suggested Citation

  • Li, Jianbiao & Niu, Xiaofei & Zhu, Chengkang & Wang, Guangrong & Cao, Qian & Li, Shuaiqi & Liu, Xiaoli & Wang, Pengcheng, 2018. "Electrophysiological Precursor of Information Cascade: Evidence from N200," EconStor Preprints 179426, ZBW - Leibniz Information Centre for Economics.
  • Handle: RePEc:zbw:esprep:179426
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    References listed on IDEAS

    as
    1. Markus Noth & Martin Weber, 2003. "Information Aggregation with Random Ordering: Cascades and Overconfidence," Economic Journal, Royal Economic Society, vol. 113(484), pages 166-189, January.
    2. Georg Weizsacker, 2010. "Do We Follow Others When We Should? A Simple Test of Rational Expectations," American Economic Review, American Economic Association, vol. 100(5), pages 2340-2360, December.
    3. Bikhchandani, Sushil & Hirshleifer, David & Welch, Ivo, 1992. "A Theory of Fads, Fashion, Custom, and Cultural Change in Informational Cascades," Journal of Political Economy, University of Chicago Press, vol. 100(5), pages 992-1026, October.
    4. Anderson, Lisa R & Holt, Charles A, 1997. "Information Cascades in the Laboratory," American Economic Review, American Economic Association, vol. 87(5), pages 847-862, December.
    5. Oberholzer-Gee, Felix, 2008. "Nonemployment stigma as rational herding: A field experiment," Journal of Economic Behavior & Organization, Elsevier, vol. 65(1), pages 30-40, January.
    6. Christopher J. Ellis & John Fender, 2011. "Information Cascades and Revolutionary Regime Transitions," Economic Journal, Royal Economic Society, vol. 121(553), pages 763-792, June.
    7. Abhijit V. Banerjee, 1992. "A Simple Model of Herd Behavior," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 107(3), pages 797-817.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cao, Qian & Li, Jianbiao & Niu, Xiaofei, 2019. "The role of overconfidence in overweighting private information: Does gender matter?," EconStor Preprints 203448, ZBW - Leibniz Information Centre for Economics.
    2. March, Christoph & Ziegelmeyer, Anthony, 2020. "Altruistic observational learning," Journal of Economic Theory, Elsevier, vol. 190(C).
    3. Sushil Bikhchandani & David Hirshleifer & Omer Tamuz & Ivo Welch, 2024. "Information Cascades and Social Learning," Journal of Economic Literature, American Economic Association, vol. 62(3), pages 1040-1093, September.
    4. Anthony Ziegelmeyer & Frédéric Koessler & Juergen Bracht & Eyal Winter, 2010. "Fragility of information cascades: an experimental study using elicited beliefs," Experimental Economics, Springer;Economic Science Association, vol. 13(2), pages 121-145, June.
    5. Bogaçhan Çelen & Sen Geng & Huihui Li, 2018. "Belief Error and Non-Bayesian Social Learning: An Experimental Evidence," GRU Working Paper Series GRU_2018_022, City University of Hong Kong, Department of Economics and Finance, Global Research Unit.
    6. Duffy, John & Hopkins, Ed & Kornienko, Tatiana, 2021. "Lone wolf or herd animal? Information choice and learning from others," European Economic Review, Elsevier, vol. 134(C).
    7. Fahr, René & Irlenbusch, Bernd, 2011. "Who follows the crowd—Groups or individuals?," Journal of Economic Behavior & Organization, Elsevier, vol. 80(1), pages 200-209.
    8. Asanov, Igor, 2021. "Bandit cascade: A test of observational learning in the bandit problem," Journal of Economic Behavior & Organization, Elsevier, vol. 189(C), pages 150-171.
    9. Wenbo Zou & Xue Xu, 2023. "Ingroup bias in a social learning experiment," Experimental Economics, Springer;Economic Science Association, vol. 26(1), pages 27-54, March.
    10. Lukas Meub & Till Proeger & Hendrik Hüning, 2017. "A comparison of endogenous and exogenous timing in a social learning experiment," Journal of Economic Interaction and Coordination, Springer;Society for Economic Science with Heterogeneous Interacting Agents, vol. 12(1), pages 143-166, April.
    11. Kraemer, Carlo & Noth, Markus & Weber, Martin, 2006. "Information aggregation with costly information and random ordering: Experimental evidence," Journal of Economic Behavior & Organization, Elsevier, vol. 59(3), pages 423-432, March.
    12. Jonathan E. Alevy & Michael S. Haigh & John List, 2006. "Information Cascades: Evidence from An Experiment with Financial Market Professionals," NBER Working Papers 12767, National Bureau of Economic Research, Inc.
    13. Markus Schöbel & Jörg Rieskamp & Rafael Huber, 2016. "Social Influences in Sequential Decision Making," PLOS ONE, Public Library of Science, vol. 11(1), pages 1-23, January.
    14. De Filippis, Roberta & Guarino, Antonio & Jehiel, Philippe & Kitagawa, Toru, 2022. "Non-Bayesian updating in a social learning experiment," Journal of Economic Theory, Elsevier, vol. 199(C).
    15. Bizer, Kilian & Meub, Lukas & Proeger, Till & Spiwoks, Markus, 2014. "Strategic coordination in forecasting: An experimental study," University of Göttingen Working Papers in Economics 195, University of Goettingen, Department of Economics.
    16. Penczynski, Stefan P., 2017. "The nature of social learning: Experimental evidence," European Economic Review, Elsevier, vol. 94(C), pages 148-165.
    17. Sebastian Berger & Christoph Feldhaus & Axel Ockenfels, 2018. "A shared identity promotes herding in an information cascade game," Journal of the Economic Science Association, Springer;Economic Science Association, vol. 4(1), pages 63-72, July.
    18. Shachar Kariv, 2005. "Overconfidence and Informational Cascades," Levine's Bibliography 122247000000000406, UCLA Department of Economics.
    19. Roberta De Filippis & Antonio Guarino & Philippe Jehiel & Toru Kitagawa, 2016. "Updating ambiguous beliefs in a social learning experiment," CeMMAP working papers 18/16, Institute for Fiscal Studies.
    20. Paul J. Healy & John Conlon & Yeochang Yoon, 2016. "Information Cascades with Informative Ratings: An Experimental Test," Working Papers 16-05, Ohio State University, Department of Economics.

    More about this item

    Keywords

    information cascade; N200; cognitive control; ERPs;
    All these keywords.

    JEL classification:

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:zbw:esprep:179426. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ZBW - Leibniz Information Centre for Economics (email available below). General contact details of provider: https://edirc.repec.org/data/zbwkide.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.