IDEAS home Printed from https://ideas.repec.org/p/zbw/cauman/481.html
   My bibliography  Save this paper

Optimization guided lower and upper bounds for the resource investment problem

Author

Listed:
  • Drexl, Andreas
  • Kimms, Alf

Abstract

The resource investment problem deals with the issue of providing resources to a project such that a given deadline can be met. The objective is to make the resources available in the cheapest possible way. For each resource, expenses depend on the maximum amount required during the course of the project. In this paper we develop two lower bounds for this NP-hard problem using Lagrangean relaxation and column generation techniques, respectively. Both procedures are capable of yielding feasible solutions as well. Hence, we also have two optimization guided heuristics. A computational study consisting of a set of 3210 instances compares both approaches and allows insight into the performance. E.g., for the instances from Möhring's test set it turns out that in 56% of the cases the heuristic solution derived on the basis of Lagrangean relaxation is optimal. Using column generation, the gap between the lower bound and the optimum objective function value is below 5% in 50% of the cases, it is below 10% in 71% of the cases, and it is below 20% in all cases.

Suggested Citation

  • Drexl, Andreas & Kimms, Alf, 1998. "Optimization guided lower and upper bounds for the resource investment problem," Manuskripte aus den Instituten für Betriebswirtschaftslehre der Universität Kiel 481, Christian-Albrechts-Universität zu Kiel, Institut für Betriebswirtschaftslehre.
  • Handle: RePEc:zbw:cauman:481
    as

    Download full text from publisher

    File URL: https://www.econstor.eu/bitstream/10419/147584/1/manuskript_481.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Erik Demeulemeester, 1995. "Minimizing Resource Availability Costs in Time-Limited Project Networks," Management Science, INFORMS, vol. 41(10), pages 1590-1598, October.
    2. Marshall L. Fisher, 1981. "The Lagrangian Relaxation Method for Solving Integer Programming Problems," Management Science, INFORMS, vol. 27(1), pages 1-18, January.
    3. Rainer Kolisch & Arno Sprecher & Andreas Drexl, 1995. "Characterization and Generation of a General Class of Resource-Constrained Project Scheduling Problems," Management Science, INFORMS, vol. 41(10), pages 1693-1703, October.
    4. Ron Shamir, 1987. "The Efficiency of the Simplex Method: A Survey," Management Science, INFORMS, vol. 33(3), pages 301-334, March.
    5. Drexl, Andreas & Kimms, Alf, 1998. "Minimizing total weighted completion times subject to precedence constraints by dynamic programming," Manuskripte aus den Instituten für Betriebswirtschaftslehre der Universität Kiel 475, Christian-Albrechts-Universität zu Kiel, Institut für Betriebswirtschaftslehre.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yamashita, Denise Sato & Armentano, Vinicius Amaral & Laguna, Manuel, 2006. "Scatter search for project scheduling with resource availability cost," European Journal of Operational Research, Elsevier, vol. 169(2), pages 623-637, March.
    2. Cédric Verbeeck & Vincent Peteghem & Mario Vanhoucke & Pieter Vansteenwegen & El-Houssaine Aghezzaf, 2017. "A metaheuristic solution approach for the time-constrained project scheduling problem," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 39(2), pages 353-371, March.
    3. Berghman, Lotte & Leus, Roel, 2015. "Practical solutions for a dock assignment problem with trailer transportation," European Journal of Operational Research, Elsevier, vol. 246(3), pages 787-799.
    4. Shadrokh, Shahram & Kianfar, Fereydoon, 2007. "A genetic algorithm for resource investment project scheduling problem, tardiness permitted with penalty," European Journal of Operational Research, Elsevier, vol. 181(1), pages 86-101, August.
    5. Portoleau, Tom & Artigues, Christian & Guillaume, Romain, 2024. "Robust decision trees for the multi-mode project scheduling problem with a resource investment objective and uncertain activity duration," European Journal of Operational Research, Elsevier, vol. 312(2), pages 525-540.
    6. Patrick Gerhards, 2020. "The multi-mode resource investment problem: a benchmark library and a computational study of lower and upper bounds," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 42(4), pages 901-933, December.
    7. Bianco, L. & Dell'Olmo, P. & Grazia Speranza, M., 1998. "Heuristics for multimode scheduling problems with dedicated resources," European Journal of Operational Research, Elsevier, vol. 107(2), pages 260-271, June.
    8. Brucker, Peter & Drexl, Andreas & Mohring, Rolf & Neumann, Klaus & Pesch, Erwin, 1999. "Resource-constrained project scheduling: Notation, classification, models, and methods," European Journal of Operational Research, Elsevier, vol. 112(1), pages 3-41, January.
    9. Rodrigues, Sávio B. & Yamashita, Denise S., 2010. "An exact algorithm for minimizing resource availability costs in project scheduling," European Journal of Operational Research, Elsevier, vol. 206(3), pages 562-568, November.
    10. Kolisch, R. & Padman, R., 2001. "An integrated survey of deterministic project scheduling," Omega, Elsevier, vol. 29(3), pages 249-272, June.
    11. Kimms, Alf, 1999. "Lagrangean relaxation for scheduling projects under resource constraints to maximize the net present value," Manuskripte aus den Instituten für Betriebswirtschaftslehre der Universität Kiel 504, Christian-Albrechts-Universität zu Kiel, Institut für Betriebswirtschaftslehre.
    12. Wendi Tian & Erik Demeulemeester, 2014. "Railway scheduling reduces the expected project makespan over roadrunner scheduling in a multi-mode project scheduling environment," Annals of Operations Research, Springer, vol. 213(1), pages 271-291, February.
    13. Wolosewicz, Cathy & Dauzère-Pérès, Stéphane & Aggoune, Riad, 2015. "A Lagrangian heuristic for an integrated lot-sizing and fixed scheduling problem," European Journal of Operational Research, Elsevier, vol. 244(1), pages 3-12.
    14. M. Vanhoucke & J. Coelho & L. V. Tavares & D. Debels, 2004. "On The Morphological Structure Of A Network," Working Papers of Faculty of Economics and Business Administration, Ghent University, Belgium 04/272, Ghent University, Faculty of Economics and Business Administration.
    15. Rainer Kolisch & Andreas Drexl, 1996. "Adaptive search for solving hard project scheduling problems," Naval Research Logistics (NRL), John Wiley & Sons, vol. 43(1), pages 23-40, February.
    16. Jan Böttcher & Andreas Drexl & Rainer Kolisch & Frank Salewski, 1999. "Project Scheduling Under Partially Renewable Resource Constraints," Management Science, INFORMS, vol. 45(4), pages 543-559, April.
    17. Sprecher, Arno & Drexl, Andreas, 1996. "Minimal delaying alternatives and semi-active timetabling in resource-constrained project scheduling," Manuskripte aus den Instituten für Betriebswirtschaftslehre der Universität Kiel 426, Christian-Albrechts-Universität zu Kiel, Institut für Betriebswirtschaftslehre.
    18. M Diaby & A L Nsakanda, 2006. "Large-scale capacitated part-routing in the presence of process and routing flexibilities and setup costs," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 57(9), pages 1100-1112, September.
    19. Ogbe, Emmanuel & Li, Xiang, 2017. "A new cross decomposition method for stochastic mixed-integer linear programming," European Journal of Operational Research, Elsevier, vol. 256(2), pages 487-499.
    20. Mutsunori Yagiura & Toshihide Ibaraki & Fred Glover, 2004. "An Ejection Chain Approach for the Generalized Assignment Problem," INFORMS Journal on Computing, INFORMS, vol. 16(2), pages 133-151, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:zbw:cauman:481. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ZBW - Leibniz Information Centre for Economics (email available below). General contact details of provider: https://edirc.repec.org/data/ibkiede.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.