IDEAS home Printed from https://ideas.repec.org/p/zbw/caseps/200404.html
   My bibliography  Save this paper

The Variance Ratio Statistic at Large Horizons

Author

Listed:
  • Deo, Rohit S.
  • Chen, Willa W.

Abstract

We make three contributions to using the variance ratio statistic at large horizons. Allowing for general heteroscedasticity in the data, we obtain the asymptotic distribution of the statistic when the horizon k is increasing with the sample size n but at a slower rate so that k=n ! 0. The test is shown to be consistent against a variety of relevant mean reverting alternatives when k=n ! 0. This is in contrast to the case when k=n ! – > 0; where the statistic has been recently shown to be inconsistent against such alternatives. Secondly, we provide and justify a simple power transformation of the statistic which yields almost perfectly normally distributed statistics in finite samples, solving the well known right skewness problem. Thirdly, we provide a more powerful way of pooling information from different horizons to test for mean reverting alternatives. Monte Carlo simulations illustrate the theoretical improvements provided.

Suggested Citation

  • Deo, Rohit S. & Chen, Willa W., 2003. "The Variance Ratio Statistic at Large Horizons," Papers 2004,04, Humboldt University of Berlin, Center for Applied Statistics and Economics (CASE).
  • Handle: RePEc:zbw:caseps:200404
    as

    Download full text from publisher

    File URL: https://www.econstor.eu/bitstream/10419/22178/1/04_wc_rd.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Lo, Andrew W. & MacKinlay, A. Craig, 1989. "The size and power of the variance ratio test in finite samples : A Monte Carlo investigation," Journal of Econometrics, Elsevier, vol. 40(2), pages 203-238, February.
    2. Fama, Eugene F & French, Kenneth R, 1988. "Permanent and Temporary Components of Stock Prices," Journal of Political Economy, University of Chicago Press, vol. 96(2), pages 246-273, April.
    3. John Y. Campbell & N. Gregory Mankiw, 1987. "Are Output Fluctuations Transitory?," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 102(4), pages 857-880.
    4. Deo, Rohit S., 2000. "Spectral tests of the martingale hypothesis under conditional heteroscedasticity," Journal of Econometrics, Elsevier, vol. 99(2), pages 291-315, December.
    5. Richardson, Matthew & Stock, James H., 1989. "Drawing inferences from statistics based on multiyear asset returns," Journal of Financial Economics, Elsevier, vol. 25(2), pages 323-348, December.
    6. Richardson, Matthew & Smith, Tom, 1991. "Tests of Financial Models in the Presence of Overlapping Observations," The Review of Financial Studies, Society for Financial Studies, vol. 4(2), pages 227-254.
    7. Andrew W. Lo, A. Craig MacKinlay, 1988. "Stock Market Prices do not Follow Random Walks: Evidence from a Simple Specification Test," The Review of Financial Studies, Society for Financial Studies, vol. 1(1), pages 41-66.
    8. Deo, Rohit S. & Richardson, Matthew, 2003. "On The Asymptotic Power Of The Variance Ratio Test," Econometric Theory, Cambridge University Press, vol. 19(2), pages 231-239, April.
    9. Cochrane, John H, 1988. "How Big Is the Random Walk in GNP?," Journal of Political Economy, University of Chicago Press, vol. 96(5), pages 893-920, October.
    10. Bougerol, Philippe & Picard, Nico, 1992. "Stationarity of Garch processes and of some nonnegative time series," Journal of Econometrics, Elsevier, vol. 52(1-2), pages 115-127.
    11. Nelson, Daniel B., 1990. "Stationarity and Persistence in the GARCH(1,1) Model," Econometric Theory, Cambridge University Press, vol. 6(3), pages 318-334, September.
    12. Faust, Jon, 1992. "When Are Variance Ratio Tests for Serial Dependence Optimal?," Econometrica, Econometric Society, vol. 60(5), pages 1215-1226, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chen, Willa W. & Deo, Rohit S., 2006. "The Variance Ratio Statistic At Large Horizons," Econometric Theory, Cambridge University Press, vol. 22(2), pages 206-234, April.
    2. Benjamin Miranda Tabak, 2003. "The random walk hypothesis and the behaviour of foreign capital portfolio flows: the Brazilian stock market case," Applied Financial Economics, Taylor & Francis Journals, vol. 13(5), pages 369-378.
    3. Campbell, John Y., 2001. "Why long horizons? A study of power against persistent alternatives," Journal of Empirical Finance, Elsevier, vol. 8(5), pages 459-491, December.
    4. Daniel, Kent, 2001. "The power and size of mean reversion tests," Journal of Empirical Finance, Elsevier, vol. 8(5), pages 493-535, December.
    5. Amélie Charles & Olivier Darné, 2009. "Variance‐Ratio Tests Of Random Walk: An Overview," Journal of Economic Surveys, Wiley Blackwell, vol. 23(3), pages 503-527, July.
    6. Shlomo Zilca, 2010. "The variance ratio and trend stationary model as extensions of a constrained autoregressive model," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 29(5), pages 467-475.
    7. John P. Miller & Paul Newbold, 1995. "A GENERALIZED VARIANCE RATIO TEST OF ARIMA (p, 1, q) MODEL SPECIFICATION," Journal of Time Series Analysis, Wiley Blackwell, vol. 16(4), pages 403-413, July.
    8. Pagan, Adrian, 1996. "The econometrics of financial markets," Journal of Empirical Finance, Elsevier, vol. 3(1), pages 15-102, May.
    9. Patrick A. Groenendijk & André Lucas & Casper G. de Vries, 1998. "A Hybrid Joint Moment Ratio Test for Financial Time Series," Tinbergen Institute Discussion Papers 98-104/2, Tinbergen Institute.
    10. Moon, Seongman & Velasco, Carlos, 2013. "Tests for m-dependence based on sample splitting methods," Journal of Econometrics, Elsevier, vol. 173(2), pages 143-159.
    11. Anoop S. KUMAR & Bandi KAMAIAH, 2016. "Efficiency, non-linearity and chaos: evidences from BRICS foreign exchange markets," Theoretical and Applied Economics, Asociatia Generala a Economistilor din Romania / Editura Economica, vol. 0(1(606), S), pages 103-118, Spring.
    12. Aye, Goodness C. & Gil-Alana, Luis A. & Gupta, Rangan & Wohar, Mark E., 2017. "The efficiency of the art market: Evidence from variance ratio tests, linear and nonlinear fractional integration approaches," International Review of Economics & Finance, Elsevier, vol. 51(C), pages 283-294.
    13. Amelie Charles & Olivier Darne, 2009. "Testing for Random Walk Behavior in Euro Exchange Rates," Economie Internationale, CEPII research center, issue 119, pages 25-45.
    14. Charles, Amélie & Darné, Olivier & Fouilloux, Jessica, 2011. "Testing the martingale difference hypothesis in CO2 emission allowances," Economic Modelling, Elsevier, vol. 28(1), pages 27-35.
    15. Masao Ogaki & Sungwook Park, 2007. "Long-run real exchange rate changes and the properties of the variance of k-differences," Working Papers 07-05, Ohio State University, Department of Economics.
    16. John B. Donaldson & Rajnish Mehra, 2021. "Average crossing time: An alternative characterization of mean aversion and reversion," Quantitative Economics, Econometric Society, vol. 12(3), pages 903-944, July.
    17. Liam Gallagher, 1999. "A multi-country analysis of the temporary and permanent components of stock prices," Applied Financial Economics, Taylor & Francis Journals, vol. 9(2), pages 129-142.
    18. Matthew Richardson & James H. Stock, 1990. "Drawing Inferences From Statistics Based on Multi-Year Asset Returns," NBER Working Papers 3335, National Bureau of Economic Research, Inc.
    19. Liam A. Gallagher & Mark P. Taylor, 2002. "Permanent and Temporary Components of Stock Prices: Evidence from Assessing Macroeconomic Shocks," Southern Economic Journal, John Wiley & Sons, vol. 69(2), pages 345-362, October.
    20. Malliaropulos, Dimitrios & Priestley, Richard, 1999. "Mean reversion in Southeast Asian stock markets," Journal of Empirical Finance, Elsevier, vol. 6(4), pages 355-384, October.

    More about this item

    Keywords

    Mean reversion; Frequency domain; Power transformation;
    All these keywords.

    JEL classification:

    • C12 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Hypothesis Testing: General
    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:zbw:caseps:200404. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ZBW - Leibniz Information Centre for Economics (email available below). General contact details of provider: https://edirc.repec.org/data/cahubde.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.