IDEAS home Printed from https://ideas.repec.org/p/zbw/bubdps/152016.html
   My bibliography  Save this paper

High-frequency trading in the Bund futures market

Author

Listed:
  • Schlepper, Kathi

Abstract

In this work, I study the impact of high-frequency trading (HFT) on price discovery and volatility in the Bund futures market. Using a new dataset based on microseconds, the focus of the study is on the reaction of high-frequency traders (HFTs) to major macroeconomic news events. I show that through their fast and strong reaction to news, HFTs contribute more to price discovery compared to Non-HFTs, but also add a higher share to noise than to permanent volatility. Moreover, I find evidence that HFTs tend to supply less liquidity after an unexpected rise in market volatility and prior to upcoming macroeconomic news events. These findings suggest that in times of high market stress, HFT behavior may exacerbate intraday price volatility and amplify the risk of market disruptions in fixed income markets.

Suggested Citation

  • Schlepper, Kathi, 2016. "High-frequency trading in the Bund futures market," Discussion Papers 15/2016, Deutsche Bundesbank.
  • Handle: RePEc:zbw:bubdps:152016
    as

    Download full text from publisher

    File URL: https://www.econstor.eu/bitstream/10419/142126/1/860791882.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Altavilla, Carlo & Giannone, Domenico & Modugno, Michele, 2017. "Low frequency effects of macroeconomic news on government bond yields," Journal of Monetary Economics, Elsevier, vol. 92(C), pages 31-46.
    2. Hasbrouck, Joel, 1991. "Measuring the Information Content of Stock Trades," Journal of Finance, American Finance Association, vol. 46(1), pages 179-207, March.
    3. Jones, Charles M. & Lamont, Owen & Lumsdaine, Robin L., 1998. "Macroeconomic news and bond market volatility," Journal of Financial Economics, Elsevier, vol. 47(3), pages 315-337, March.
    4. Zhang, Lan & Mykland, Per A. & Ait-Sahalia, Yacine, 2005. "A Tale of Two Time Scales: Determining Integrated Volatility With Noisy High-Frequency Data," Journal of the American Statistical Association, American Statistical Association, vol. 100, pages 1394-1411, December.
    5. Benos, Evangelos & Sagade, Satchit, 2012. "High-frequency trading behaviour and its impact on market quality: evidence from the UK equity market," Bank of England working papers 469, Bank of England.
    6. Beveridge, Stephen & Nelson, Charles R., 1981. "A new approach to decomposition of economic time series into permanent and transitory components with particular attention to measurement of the `business cycle'," Journal of Monetary Economics, Elsevier, vol. 7(2), pages 151-174.
    7. Hasbrouck, Joel & Saar, Gideon, 2009. "Technology and liquidity provision: The blurring of traditional definitions," Journal of Financial Markets, Elsevier, vol. 12(2), pages 143-172, May.
    8. Hasbrouck, Joel, 1991. "The Summary Informativeness of Stock Trades: An Econometric Analysis," The Review of Financial Studies, Society for Financial Studies, vol. 4(3), pages 571-595.
    9. Gao, Cheng & Mizrach, Bruce, 2016. "Market quality breakdowns in equities," Journal of Financial Markets, Elsevier, vol. 28(C), pages 1-23.
    10. Menkveld, Albert J., 2013. "High frequency trading and the new market makers," Journal of Financial Markets, Elsevier, vol. 16(4), pages 712-740.
    11. Jonathan Brogaard & Terrence Hendershott & Ryan Riordan, 2014. "High-Frequency Trading and Price Discovery," The Review of Financial Studies, Society for Financial Studies, vol. 27(8), pages 2267-2306.
    12. Breckenfelder, Johannes, 2013. "Competition between high-frequency traders, and market quality," MPRA Paper 66715, University Library of Munich, Germany, revised Dec 2013.
    13. Terrence Hendershott & Charles M. Jones & Albert J. Menkveld, 2011. "Does Algorithmic Trading Improve Liquidity?," Journal of Finance, American Finance Association, vol. 66(1), pages 1-33, February.
    14. Hasbrouck, Joel, 1993. "Assessing the Quality of a Security Market: A New Approach to Transaction-Cost Measurement," The Review of Financial Studies, Society for Financial Studies, vol. 6(1), pages 191-212.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hautsch, Nikolaus & Noé, Michael & Zhang, S. Sarah, 2017. "The ambivalent role of high-frequency trading in turbulent market periods," CFS Working Paper Series 580, Center for Financial Studies (CFS).
    2. Antoine Bouveret & Martin Haferkorn & Gaetano Marseglia & Onofrio Panzarino, 2022. "Flash crashes on sovereign bond markets – EU evidence," Mercati, infrastrutture, sistemi di pagamento (Markets, Infrastructures, Payment Systems) 20, Bank of Italy, Directorate General for Markets and Payment System.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhou, Hao & Kalev, Petko S., 2019. "Algorithmic and high frequency trading in Asia-Pacific, now and the future," Pacific-Basin Finance Journal, Elsevier, vol. 53(C), pages 186-207.
    2. Breedon, Francis & Chen, Louisa & Ranaldo, Angelo & Vause, Nicholas, 2023. "Judgment day: Algorithmic trading around the Swiss franc cap removal," Journal of International Economics, Elsevier, vol. 140(C).
    3. Jing Nie, 2019. "High‐Frequency Price Discovery and Price Efficiency on Interest Rate Futures," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 39(11), pages 1394-1434, November.
    4. Nicholas Hirschey, 2021. "Do High-Frequency Traders Anticipate Buying and Selling Pressure?," Management Science, INFORMS, vol. 67(6), pages 3321-3345, June.
    5. Ekinci, Cumhur & Ersan, Oğuz, 2022. "High-frequency trading and market quality: The case of a “slightly exposed” market," International Review of Financial Analysis, Elsevier, vol. 79(C).
    6. Benos, Evangelos & Sagade, Satchit, 2016. "Price discovery and the cross-section of high-frequency trading," Journal of Financial Markets, Elsevier, vol. 30(C), pages 54-77.
    7. Hendershott, Terrence & Menkveld, Albert J., 2014. "Price pressures," Journal of Financial Economics, Elsevier, vol. 114(3), pages 405-423.
    8. Zhou, Hao & Elliott, Robert J. & Kalev, Petko S., 2019. "Information or noise: What does algorithmic trading incorporate into the stock prices?," International Review of Financial Analysis, Elsevier, vol. 63(C), pages 27-39.
    9. Kang, Jongho & Kang, Jangkoo & Kwon, Kyung Yoon, 2022. "Market versus limit orders of speculative high-frequency traders and price discovery," Research in International Business and Finance, Elsevier, vol. 63(C).
    10. Benos, Evangelos & Sagade, Satchit, 2012. "High-frequency trading behaviour and its impact on market quality: evidence from the UK equity market," Bank of England working papers 469, Bank of England.
    11. de Jong, Frank & Nijman, Theo & Roell, Ailsa, 1996. "Price effects of trading and components of the bid-ask spread on the Paris Bourse," Journal of Empirical Finance, Elsevier, vol. 3(2), pages 193-213, June.
    12. Albert J. Menkveld & Marius A. Zoican, 2017. "Need for Speed? Exchange Latency and Liquidity," The Review of Financial Studies, Society for Financial Studies, vol. 30(4), pages 1188-1228.
    13. Ya‐Kai Chang & Robin K. Chou, 2022. "Algorithmic trading and market quality: Evidence from the Taiwan index futures market," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 42(10), pages 1837-1855, October.
    14. Danny Lo, 2015. "Essays in Market Microstructure and Investor Trading," PhD Thesis, Finance Discipline Group, UTS Business School, University of Technology, Sydney, number 4-2015, January-A.
    15. Sandrine Jacob Leal & Mauro Napoletano & Andrea Roventini & Giorgio Fagiolo, 2016. "Rock around the clock: An agent-based model of low- and high-frequency trading," Journal of Evolutionary Economics, Springer, vol. 26(1), pages 49-76, March.
    16. Van Ness, Bonnie & Van Ness, Robert & Yildiz, Serhat, 2021. "Private information in trades, R2, and large stock price movements," Journal of Banking & Finance, Elsevier, vol. 131(C).
    17. Hans Degryse & Rudy de Winne & Carole Gresse & Richard Payne, 2018. "Cross-Venue Liquidity Provision: High Frequency Trading and Ghost Liquidity," Post-Print hal-01947824, HAL.
    18. Aït-Sahalia, Yacine & Brunetti, Celso, 2020. "High frequency traders and the price process," Journal of Econometrics, Elsevier, vol. 217(1), pages 20-45.
    19. Notheisen, Benedikt & Marino, Vincenzo & Englert, Daniel & Weinhardt, Christof, 2019. "Trading stocks on blocks: The quality of decentralized markets," Working Paper Series in Economics 129, Karlsruhe Institute of Technology (KIT), Department of Economics and Management.
    20. Hussain, Syed Mujahid & Ahmad, Nisar & Ahmed, Sheraz, 2023. "Applications of high-frequency data in finance: A bibliometric literature review," International Review of Financial Analysis, Elsevier, vol. 89(C).

    More about this item

    Keywords

    High-Frequency Trading; Price Discovery; Volatility;
    All these keywords.

    JEL classification:

    • G10 - Financial Economics - - General Financial Markets - - - General (includes Measurement and Data)
    • G12 - Financial Economics - - General Financial Markets - - - Asset Pricing; Trading Volume; Bond Interest Rates
    • G14 - Financial Economics - - General Financial Markets - - - Information and Market Efficiency; Event Studies; Insider Trading

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:zbw:bubdps:152016. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ZBW - Leibniz Information Centre for Economics (email available below). General contact details of provider: https://edirc.repec.org/data/dbbgvde.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.