IDEAS home Printed from https://ideas.repec.org/p/zbw/bubdp2/201114.html
   My bibliography  Save this paper

A hierarchical Archimedean copula for portfolio credit risk modelling

Author

Listed:
  • Puzanova, Natalia

Abstract

I introduce a novel, hierarchical model of tail dependent asset returns which can be particularly useful for measuring portfolio credit risk within the structural framework. To allow for a stronger dependence within sub-portfolios than between them, I utilise the concept of nested Archimedean copulas, but modify the nesting procedure to ensure the compatibility of copula generators by construction. This makes sampling straightforward. Moreover, I provide details on a particular specification based on a gamma mixture of powers. This model allows for lower tail dependence, resulting in a more conservative credit risk assessment than a comparable Gaussian model. I illustrate the extent of model risk when calculating VaR or Expected Shortfall for a credit portfolio.

Suggested Citation

  • Puzanova, Natalia, 2011. "A hierarchical Archimedean copula for portfolio credit risk modelling," Discussion Paper Series 2: Banking and Financial Studies 2011,14, Deutsche Bundesbank.
  • Handle: RePEc:zbw:bubdp2:201114
    as

    Download full text from publisher

    File URL: https://www.econstor.eu/bitstream/10419/52132/1/672240238.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Marius Hofert & Matthias Scherer, 2011. "CDO pricing with nested Archimedean copulas," Quantitative Finance, Taylor & Francis Journals, vol. 11(5), pages 775-787.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Segers, Johan & Uyttendaele, Nathan, 2014. "Nonparametric estimation of the tree structure of a nested Archimedean copula," Computational Statistics & Data Analysis, Elsevier, vol. 72(C), pages 190-204.
    2. Tente, Natalia & von Westernhagen, Natalja & Slopek, Ulf, 2017. "M-PRESS-CreditRisk: A holistic micro- and macroprudential approach to capital requirements," Discussion Papers 15/2017, Deutsche Bundesbank.
    3. Natalia Tente & Natalja Von Westernhagen & Ulf Slopek, 2019. "M‐PRESS‐CreditRisk: Microprudential and Macroprudential Capital Requirements for Credit Risk under Systemic Stress," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 51(7), pages 1923-1961, October.
    4. Yong Ma & Zhengjun Zhang & Weiguo Zhang & Weidong Xu, 2015. "Evaluating the Default Risk of Bond Portfolios with Extreme Value Theory," Computational Economics, Springer;Society for Computational Economics, vol. 45(4), pages 647-668, April.
    5. Antonov I. N. & Knyazev A. G. & Lepekhin O. A., 2016. "Copula Models of the Joint Distribution of Exchange Rates," World of economics and management / Vestnik NSU. Series: Social and Economics Sciences, Socionet, vol. 16(4), pages 20-38.
    6. Segers, Johan & Uyttendaele, Nathan, 2013. "Nonparametric estimation of the tree structure of a nested Archimedean copula," LIDAM Discussion Papers ISBA 2013009, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    7. Knyazev, Alexander & Lepekhin, Oleg & Shemyakin, Arkady, 2016. "Joint distribution of stock indices: Methodological aspects of construction and selection of copula models," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 42, pages 30-53.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bedoui, Rihab & Braiek, Sana & Guesmi, Khaled & Chevallier, Julien, 2019. "On the conditional dependence structure between oil, gold and USD exchange rates: Nested copula based GJR-GARCH model," Energy Economics, Elsevier, vol. 80(C), pages 876-889.
    2. Ostap Okhrin & Anastasija Tetereva, 2017. "The Realized Hierarchical Archimedean Copula in Risk Modelling," Econometrics, MDPI, vol. 5(2), pages 1-31, June.
    3. Hofert, Marius & Mächler, Martin & McNeil, Alexander J., 2012. "Likelihood inference for Archimedean copulas in high dimensions under known margins," Journal of Multivariate Analysis, Elsevier, vol. 110(C), pages 133-150.
    4. Víctor Adame-García & Fernando Fernández-Rodríguez & Simón Sosvilla-Rivero, 2017. "“Resolution of optimization problems and construction of efficient portfolios: An application to the Euro Stoxx 50 index"," IREA Working Papers 201702, University of Barcelona, Research Institute of Applied Economics, revised Feb 2017.
    5. Ulrich Erlenmaier & Hans Gersbach, 2014. "Default Correlations in the Merton Model," Review of Finance, European Finance Association, vol. 18(5), pages 1775-1809.
    6. Okhrin, Ostap & Xu, Ya Fei, 2017. "A comparison study of pricing credit default swap index tranches with convex combination of copulae," The North American Journal of Economics and Finance, Elsevier, vol. 42(C), pages 193-217.
    7. Mai Jan-Frederik, 2019. "Simulation algorithms for hierarchical Archimedean copulas beyond the completely monotone case," Dependence Modeling, De Gruyter, vol. 7(1), pages 202-214, January.
    8. Hengxin Cui & Ken Seng Tan & Fan Yang, 2024. "Portfolio credit risk with Archimedean copulas: asymptotic analysis and efficient simulation," Papers 2411.06640, arXiv.org.
    9. Desislava Chetalova & Marcel Wollschlager & Rudi Schafer, 2015. "Dependence structure of market states," Papers 1503.09004, arXiv.org, revised Jul 2015.
    10. Diakarya Barro & Moumouni Diallo & Remi Guillaume Bagré, 2016. "Spatial Tail Dependence and Survival Stability in a Class of Archimedean Copulas," International Journal of Mathematics and Mathematical Sciences, Hindawi, vol. 2016, pages 1-8, July.
    11. Yong Ma & Zhengjun Zhang & Weiguo Zhang & Weidong Xu, 2015. "Evaluating the Default Risk of Bond Portfolios with Extreme Value Theory," Computational Economics, Springer;Society for Computational Economics, vol. 45(4), pages 647-668, April.
    12. Górecki, Jan & Hofert, Marius & Okhrin, Ostap, 2021. "Outer power transformations of hierarchical Archimedean copulas: Construction, sampling and estimation," Computational Statistics & Data Analysis, Elsevier, vol. 155(C).
    13. Diers, Dorothea & Eling, Martin & Marek, Sebastian D., 2012. "Dependence modeling in non-life insurance using the Bernstein copula," Insurance: Mathematics and Economics, Elsevier, vol. 50(3), pages 430-436.
    14. Patton, Andrew, 2013. "Copula Methods for Forecasting Multivariate Time Series," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 899-960, Elsevier.
    15. Choe, Geon Ho & Choi, So Eun & Jang, Hyun Jin, 2020. "Assessment of time-varying systemic risk in credit default swap indices: Simultaneity and contagiousness," The North American Journal of Economics and Finance, Elsevier, vol. 54(C).
    16. Grothe, Oliver & Hofert, Marius, 2015. "Construction and sampling of Archimedean and nested Archimedean Lévy copulas," Journal of Multivariate Analysis, Elsevier, vol. 138(C), pages 182-198.
    17. Cossette, Hélène & Marceau, Etienne & Mtalai, Itre & Veilleux, Déry, 2018. "Dependent risk models with Archimedean copulas: A computational strategy based on common mixtures and applications," Insurance: Mathematics and Economics, Elsevier, vol. 78(C), pages 53-71.
    18. Patton, Andrew J., 2012. "A review of copula models for economic time series," Journal of Multivariate Analysis, Elsevier, vol. 110(C), pages 4-18.
    19. Paul Embrechts & Marius Hofert, 2011. "Comments on: Inference in multivariate Archimedean copula models," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 20(2), pages 263-270, August.
    20. Bernardi Enrico & Romagnoli Silvia, 2015. "A copula-based hierarchical hybrid loss distribution," Statistics & Risk Modeling, De Gruyter, vol. 32(1), pages 73-87, April.

    More about this item

    Keywords

    portfolio credit risk; nested Archimedean copula; tail dependence; hierarchical dependence structure;
    All these keywords.

    JEL classification:

    • C46 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods: Special Topics - - - Specific Distributions
    • C63 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Computational Techniques
    • G21 - Financial Economics - - Financial Institutions and Services - - - Banks; Other Depository Institutions; Micro Finance Institutions; Mortgages

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:zbw:bubdp2:201114. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ZBW - Leibniz Information Centre for Economics (email available below). General contact details of provider: https://edirc.repec.org/data/dbbgvde.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.