IDEAS home Printed from https://ideas.repec.org/p/zbw/bubdp1/6137.html
   My bibliography  Save this paper

Heterogeneous expectations, learning and European inflation dynamics

Author

Listed:
  • Weber, Anke

Abstract

This paper is the first attempt to investigate the performance of different learning rules in fitting survey data of household and expert inflation expectations in five core European economies (France, Germany, Italy, Netherlands and Spain). Overall it is found that constant gain learning performs well in out-of-sample forecasting. It is also shown that households in high inflation countries are using higher best fitting constant gain parameters than those in low inflation countries. They are hence able to pick up structural changes faster. Professional forecasters update their information sets more frequently than households. Furthermore, household expectations in the Euro Area have not converged to the inflation goal of the ECB, which is to keep inflation below to but close to 2% in the medium run. This contrasts the findings for professional experts, which seem to be more inclined to incorporate the implications of monetary union for the convergence in inflation rates into their expectations.

Suggested Citation

  • Weber, Anke, 2007. "Heterogeneous expectations, learning and European inflation dynamics," Discussion Paper Series 1: Economic Studies 2007,16, Deutsche Bundesbank.
  • Handle: RePEc:zbw:bubdp1:6137
    as

    Download full text from publisher

    File URL: https://www.econstor.eu/bitstream/10419/19693/1/200716dkp.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Marcet, Albert & Sargent, Thomas J., 1989. "Convergence of least squares learning mechanisms in self-referential linear stochastic models," Journal of Economic Theory, Elsevier, vol. 48(2), pages 337-368, August.
    2. N. Gregory Mankiw & Ricardo Reis, 2007. "Sticky Information in General Equilibrium," Journal of the European Economic Association, MIT Press, vol. 5(2-3), pages 603-613, 04-05.
    3. Albert Marcet & Juan P. Nicolini, 2003. "Recurrent Hyperinflations and Learning," American Economic Review, American Economic Association, vol. 93(5), pages 1476-1498, December.
    4. Holden, K & Peel, D A, 1990. "On Testing for Unbiasedness and Efficiency of Forecasts," The Manchester School of Economic & Social Studies, University of Manchester, vol. 58(2), pages 120-127, June.
    5. Milani, Fabio, 2007. "Expectations, learning and macroeconomic persistence," Journal of Monetary Economics, Elsevier, vol. 54(7), pages 2065-2082, October.
    6. Christian Schumacher, 2007. "Forecasting German GDP using alternative factor models based on large datasets," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 26(4), pages 271-302.
    7. Harvey, David & Leybourne, Stephen & Newbold, Paul, 1997. "Testing the equality of prediction mean squared errors," International Journal of Forecasting, Elsevier, vol. 13(2), pages 281-291, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Berardi, Michele & Galimberti, Jaqueson K., 2017. "Empirical calibration of adaptive learning," Journal of Economic Behavior & Organization, Elsevier, vol. 144(C), pages 219-237.
    2. Carlos Huertas Campos & Eliana González Molano & Cristhian Ruiz Cardozo, 2015. "La formación de expectativas de inflación en Colombia," Borradores de Economia 12699, Banco de la Republica.
    3. Elias, Christopher J., 2022. "Adaptive learning with heterogeneous expectations in an estimated medium-scale New Keynesian model," Journal of Macroeconomics, Elsevier, vol. 71(C).
    4. Gilberto Tadeu Lima & Mark Setterfield & Jaylson Jair da Silveira, 2014. "Inflation Targeting and Macroeconomic Stability with Heterogeneous Inflation Expectations," Journal of Post Keynesian Economics, Taylor & Francis Journals, vol. 37(2), pages 255-279, December.
    5. Michele Berardi & Jaqueson K. Galimberti, 2012. "On the plausibility of adaptive learning in macroeconomics: A puzzling conflict in the choice of the representative algorithm," Centre for Growth and Business Cycle Research Discussion Paper Series 177, Economics, The University of Manchester.
    6. Jaylson Jair da Silveira & Gilberto Tadeu Lima, 2014. "Heterogeneity in Inflation Expectations and Macroeconomic Stability under Satisficing Learning," Working Papers, Department of Economics 2014_28, University of São Paulo (FEA-USP).
    7. Steffen Henzel, 2008. "Learning Trend Inflation – Can Signal Extraction Explain Survey Forecasts?," ifo Working Paper Series 55, ifo Institute - Leibniz Institute for Economic Research at the University of Munich.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xuan, Chunji & Kim, Chang-Jin, 2020. "Structural breaks in the mean of dividend-price ratios: Implications of learning on stock return predictability," Japan and the World Economy, Elsevier, vol. 55(C).
    2. Stephen J. Cole, 2021. "Learning and the Effectiveness of Central Bank Forward Guidance," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 53(1), pages 157-200, February.
    3. Caprioli, Francesco, 2015. "Optimal fiscal policy under learning," Journal of Economic Dynamics and Control, Elsevier, vol. 58(C), pages 101-124.
    4. Gáti, Laura, 2023. "Monetary policy & anchored expectations—An endogenous gain learning model," Journal of Monetary Economics, Elsevier, vol. 140(S), pages 37-47.
    5. Stephen J. Cole, 2020. "The Limits of Central Bank forward Guidance under Learning," International Journal of Central Banking, International Journal of Central Banking, vol. 16(4), pages 199-250, September.
    6. George W. Evans & Seppo Honkapohja & Kaushik Mitra, 2022. "Expectations, Stagnation, And Fiscal Policy: A Nonlinear Analysis," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 63(3), pages 1397-1425, August.
    7. Fabio Milani, 2009. "Adaptive Learning and Macroeconomic Inertia in the Euro Area," Journal of Common Market Studies, Wiley Blackwell, vol. 47(3), pages 579-599, June.
    8. Evans, David & Evans, George W. & McGough, Bruce, 2021. "Learning when to say no," Journal of Economic Theory, Elsevier, vol. 194(C).
    9. Michele Berardi & Jaqueson K. Galimberti, 2012. "On the initialization of adaptive learning algorithms: A review of methods and a new smoothing-based routine," Centre for Growth and Business Cycle Research Discussion Paper Series 175, Economics, The University of Manchester.
    10. Molnár, Krisztina & Santoro, Sergio, 2014. "Optimal monetary policy when agents are learning," European Economic Review, Elsevier, vol. 66(C), pages 39-62.
    11. Michele Berardi & Jaqueson K. Galimberti, 2012. "On the plausibility of adaptive learning in macroeconomics: A puzzling conflict in the choice of the representative algorithm," Centre for Growth and Business Cycle Research Discussion Paper Series 177, Economics, The University of Manchester.
    12. Branch, William A. & McGough, Bruce, 2009. "A New Keynesian model with heterogeneous expectations," Journal of Economic Dynamics and Control, Elsevier, vol. 33(5), pages 1036-1051, May.
    13. De Grauwe, Paul & Markiewicz, Agnieszka, 2013. "Learning to forecast the exchange rate: Two competing approaches," Journal of International Money and Finance, Elsevier, vol. 32(C), pages 42-76.
    14. Carceles-Poveda, Eva & Giannitsarou, Chryssi, 2007. "Adaptive learning in practice," Journal of Economic Dynamics and Control, Elsevier, vol. 31(8), pages 2659-2697, August.
    15. Arturo Ormeño & Krisztina Molnár, 2015. "Using Survey Data of Inflation Expectations in the Estimation of Learning and Rational Expectations Models," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 47(4), pages 673-699, June.
    16. Cars Hommes & Kostas Mavromatis & Tolga Özden & Mei Zhu, 2023. "Behavioral learning equilibria in New Keynesian models," Quantitative Economics, Econometric Society, vol. 14(4), pages 1401-1445, November.
    17. repec:bla:jcmkts:v:47:y:2009:i::p:579-599 is not listed on IDEAS
    18. Mitra, Kaushik & Evans, George W. & Honkapohja, Seppo, 2019. "Fiscal Policy Multipliers In An Rbc Model With Learning," Macroeconomic Dynamics, Cambridge University Press, vol. 23(1), pages 240-283, January.
    19. Orphanides, Athanasios & Williams, John C., 2008. "Learning, expectations formation, and the pitfalls of optimal control monetary policy," Journal of Monetary Economics, Elsevier, vol. 55(Supplemen), pages 80-96, October.
    20. Atanas Christev, 2006. "Learning Hyperinflations," Computing in Economics and Finance 2006 475, Society for Computational Economics.
    21. Giuseppe Ferrero, 2004. "Monetary Policy and the Transition to Rational Expectations," Econometric Society 2004 North American Summer Meetings 101, Econometric Society.

    More about this item

    Keywords

    Monetary policy; heterogeneous expectations; adaptive learning; survey expectations;
    All these keywords.

    JEL classification:

    • D84 - Microeconomics - - Information, Knowledge, and Uncertainty - - - Expectations; Speculations
    • E37 - Macroeconomics and Monetary Economics - - Prices, Business Fluctuations, and Cycles - - - Forecasting and Simulation: Models and Applications
    • E31 - Macroeconomics and Monetary Economics - - Prices, Business Fluctuations, and Cycles - - - Price Level; Inflation; Deflation

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:zbw:bubdp1:6137. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ZBW - Leibniz Information Centre for Economics (email available below). General contact details of provider: https://edirc.repec.org/data/dbbgvde.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.