IDEAS home Printed from https://ideas.repec.org/p/zbw/bonedp/232004.html
   My bibliography  Save this paper

Minority Game: Experiments and Simulations of Traffic Scenarios

Author

Listed:
  • Chmura, Thorsten
  • Pitz, Thomas

Abstract

This paper reports laboratory experiments and simulations on a minority game. The minority game is the most important example for a classic non-zerosum- game. The game can be applied on different situations with social and economic contests. We chose an elementary traffic scenario, in which subjects had to choose between a road A and a road B. Nine subjects participated in each session. Subjects played 100 rounds and had to choose between one of the roads. The road which the minority of players chose got positive payoffs. We constructed an extended reinforcement model which fits the empirical data.

Suggested Citation

  • Chmura, Thorsten & Pitz, Thomas, 2004. "Minority Game: Experiments and Simulations of Traffic Scenarios," Bonn Econ Discussion Papers 23/2004, University of Bonn, Bonn Graduate School of Economics (BGSE).
  • Handle: RePEc:zbw:bonedp:232004
    as

    Download full text from publisher

    File URL: https://www.econstor.eu/bitstream/10419/22900/1/bgse23_2004.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Roth, Alvin E. & Erev, Ido, 1995. "Learning in extensive-form games: Experimental data and simple dynamic models in the intermediate term," Games and Economic Behavior, Elsevier, vol. 8(1), pages 164-212.
    2. Arthur, W Brian, 1991. "Designing Economic Agents that Act Like Human Agents: A Behavioral Approach to Bounded Rationality," American Economic Review, American Economic Association, vol. 81(2), pages 353-359, May.
    3. Johnson, N.F. & Jarvis, S. & Jonson, R. & Cheung, P. & Kwong, Y.R. & Hui, P.M., 1998. "Volatility and agent adaptability in a self-organizing market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 258(1), pages 230-236.
    4. Arthur, W Brian, 1994. "Inductive Reasoning and Bounded Rationality," American Economic Review, American Economic Association, vol. 84(2), pages 406-411, May.
    5. Erev, Ido & Roth, Alvin E, 1998. "Predicting How People Play Games: Reinforcement Learning in Experimental Games with Unique, Mixed Strategy Equilibria," American Economic Review, American Economic Association, vol. 88(4), pages 848-881, September.
    6. W. Brian Arthur, 1994. "Inductive Reasoning, Bounded Rationality and the Bar Problem," Working Papers 94-03-014, Santa Fe Institute.
    7. Challet, D. & Zhang, Y.-C., 1997. "Emergence of cooperation and organization in an evolutionary game," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 246(3), pages 407-418.
    8. Challet, Damien & Zhang, Yi-Cheng, 1998. "On the minority game: Analytical and numerical studies," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 256(3), pages 514-532.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kets, W., 2007. "The Minority Game : An Economics Perspective," Other publications TiSEM 65d52a6a-b27d-45a9-93a7-e, Tilburg University, School of Economics and Management.
    2. Hartman, John Lawrence, 2007. "Essays on Congestion Economics," University of California Transportation Center, Working Papers qt40p4m581, University of California Transportation Center.
    3. Beheshtian, Arash & Richard Geddes, R. & Rouhani, Omid M. & Kockelman, Kara M. & Ockenfels, Axel & Cramton, Peter & Do, Wooseok, 2020. "Bringing the efficiency of electricity market mechanisms to multimodal mobility across congested transportation systems," Transportation Research Part A: Policy and Practice, Elsevier, vol. 131(C), pages 58-69.
    4. Hartman, John Lawrence, 2007. "A Route Choice Experiment With an Efficient Toll," University of California at Santa Barbara, Economics Working Paper Series qt4s1116mv, Department of Economics, UC Santa Barbara.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Willemien Kets, 2007. "The minority game: An economics perspective," Papers 0706.4432, arXiv.org.
    2. Marsili, Matteo & Challet, Damien & Zecchina, Riccardo, 2000. "Exact solution of a modified El Farol's bar problem: Efficiency and the role of market impact," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 280(3), pages 522-553.
    3. Kets, W., 2008. "Networks and learning in game theory," Other publications TiSEM 7713fce1-3131-498c-8c6f-3, Tilburg University, School of Economics and Management.
    4. Thorsten Chmura & Thomas Pitz, 2007. "An Extended Reinforcement Algorithm for Estimation of Human Behaviour in Experimental Congestion Games," Journal of Artificial Societies and Social Simulation, Journal of Artificial Societies and Social Simulation, vol. 10(2), pages 1-1.
    5. Mansilla, R, 2000. "From naive to sophisticated behavior in multiagents-based financial market models," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 284(1), pages 478-488.
    6. Epstein, Daniel & Bazzan, Ana L.C., 2013. "The value of less connected agents in Boolean networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(21), pages 5387-5398.
    7. Wawrzyniak, Karol & Wiślicki, Wojciech, 2012. "Mesoscopic approach to minority games in herd regime," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(5), pages 2056-2082.
    8. Linde, Jona & Sonnemans, Joep & Tuinstra, Jan, 2014. "Strategies and evolution in the minority game: A multi-round strategy experiment," Games and Economic Behavior, Elsevier, vol. 86(C), pages 77-95.
    9. Giovanna Devetag & Francesca Pancotto & Thomas Brenner, 2011. "The Minority Game Unpacked: Coordination and Competition in a Team-based Experiment," LEM Papers Series 2011/18, Laboratory of Economics and Management (LEM), Sant'Anna School of Advanced Studies, Pisa, Italy.
    10. Arthur Charpentier & Romuald Élie & Carl Remlinger, 2023. "Reinforcement Learning in Economics and Finance," Computational Economics, Springer;Society for Computational Economics, vol. 62(1), pages 425-462, June.
    11. Matteo Marsili & Damien Challet, 2001. "Trading Behavior And Excess Volatility In Toy Markets," Advances in Complex Systems (ACS), World Scientific Publishing Co. Pte. Ltd., vol. 4(01), pages 3-17.
    12. Giulio Bottazzi & Giovanna Devetag, 2002. "Coordination and self-organization in minority games: experimental evidence," CEEL Working Papers 0215, Cognitive and Experimental Economics Laboratory, Department of Economics, University of Trento, Italia.
    13. Cross, Rod & Grinfeld, Michael & Lamba, Harbir & Seaman, Tim, 2005. "A threshold model of investor psychology," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 354(C), pages 463-478.
    14. Andersen, Jørgen Vitting & de Peretti, Philippe, 2021. "Heuristics in experiments with infinitely large strategy spaces," Journal of Business Research, Elsevier, vol. 129(C), pages 612-620.
    15. Płatkowski, Tadeusz & Ramsza, Michał, 2003. "Playing minority game," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 323(C), pages 726-734.
    16. Christoph Zott, 2002. "When Adaptation Fails," Journal of Conflict Resolution, Peace Science Society (International), vol. 46(6), pages 727-753, December.
    17. Chmura, T. & Pitz, T., 2006. "Successful strategies in repeated minority games," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 363(2), pages 477-480.
    18. Delli Gatti,Domenico & Fagiolo,Giorgio & Gallegati,Mauro & Richiardi,Matteo & Russo,Alberto (ed.), 2018. "Agent-Based Models in Economics," Cambridge Books, Cambridge University Press, number 9781108400046, October.
    19. Yamada, Takashi & Hanaki, Nobuyuki, 2016. "An experiment on Lowest Unique Integer Games," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 463(C), pages 88-102.
    20. Jørgen Vitting Andersen & Philippe de Peretti, 2020. "Heuristics in experiments with infinitely large strategy spaces," Post-Print hal-02435934, HAL.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:zbw:bonedp:232004. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ZBW - Leibniz Information Centre for Economics (email available below). General contact details of provider: https://edirc.repec.org/data/gsbonde.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.