IDEAS home Printed from https://ideas.repec.org/p/zbw/bonedp/132010.html
   My bibliography  Save this paper

The Uncertain Mortality Intensity Framework: Pricing and Hedging Unit-Linked Life Insurance Contracts

Author

Listed:
  • Li, Jing
  • Szimayer, Alexander

Abstract

We study the valuation and hedging of unit-linked life insurance contracts in a setting where mortality intensity is governed by a stochastic process. We focus on model risk arising from different specifications for the mortality intensity. To do so we assume that the mortality intensity is almost surely bounded under the statistical measure. Further, we restrict the equivalent martingale measures and apply the same bounds to the mortality intensity under these measures. For this setting we derive upper and lower price bounds for unit-linked life insurance contracts using stochastic control techniques. We also show that the induced hedging strategies indeed produce a dynamic superhedge and subhedge under the statistical measure in the limit when the number of contracts increases. This justifies the bounds for the mortality intensity under the pricing measures. We provide numerical examples investigating fixed-term, endowment insurance contracts and their combinations including various guarantee features. The pricing partial differential equation for the upper and lower price bounds is solved by finite difference methods. For our contracts and choice of parameters the pricing and hedging is fairly robust with respect to misspecification of the mortality intensity. The model risk resulting from the uncertain mortality intensity is of minor importance.

Suggested Citation

  • Li, Jing & Szimayer, Alexander, 2010. "The Uncertain Mortality Intensity Framework: Pricing and Hedging Unit-Linked Life Insurance Contracts," Bonn Econ Discussion Papers 13/2010, University of Bonn, Bonn Graduate School of Economics (BGSE).
  • Handle: RePEc:zbw:bonedp:132010
    as

    Download full text from publisher

    File URL: https://www.econstor.eu/bitstream/10419/38809/1/631986537.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Biffis, Enrico, 2005. "Affine processes for dynamic mortality and actuarial valuations," Insurance: Mathematics and Economics, Elsevier, vol. 37(3), pages 443-468, December.
    2. Melnikov, Alexander & Romaniuk, Yulia, 2006. "Evaluating the performance of Gompertz, Makeham and Lee-Carter mortality models for risk management with unit-linked contracts," Insurance: Mathematics and Economics, Elsevier, vol. 39(3), pages 310-329, December.
    3. Ronald Lee, 2000. "The Lee-Carter Method for Forecasting Mortality, with Various Extensions and Applications," North American Actuarial Journal, Taylor & Francis Journals, vol. 4(1), pages 80-91.
    4. Dahl, Mikkel & Moller, Thomas, 2006. "Valuation and hedging of life insurance liabilities with systematic mortality risk," Insurance: Mathematics and Economics, Elsevier, vol. 39(2), pages 193-217, October.
    5. Andrew J. G. Cairns & David Blake & Kevin Dowd, 2006. "A Two‐Factor Model for Stochastic Mortality with Parameter Uncertainty: Theory and Calibration," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 73(4), pages 687-718, December.
    6. M. Avellaneda & A. Levy & A. ParAS, 1995. "Pricing and hedging derivative securities in markets with uncertain volatilities," Applied Mathematical Finance, Taylor & Francis Journals, vol. 2(2), pages 73-88.
    7. Dai, Min & Kwok, Yue Kuen & You, Hong, 2007. "Intensity-based framework and penalty formulation of optimal stopping problems," Journal of Economic Dynamics and Control, Elsevier, vol. 31(12), pages 3860-3880, December.
    8. Dahl, Mikkel, 2004. "Stochastic mortality in life insurance: market reserves and mortality-linked insurance contracts," Insurance: Mathematics and Economics, Elsevier, vol. 35(1), pages 113-136, August.
    9. Cairns, Andrew J.G. & Blake, David & Dowd, Kevin, 2006. "Pricing Death: Frameworks for the Valuation and Securitization of Mortality Risk," ASTIN Bulletin, Cambridge University Press, vol. 36(1), pages 79-120, May.
    10. Carter, Lawrence R. & Lee, Ronald D., 1992. "Modeling and forecasting US sex differentials in mortality," International Journal of Forecasting, Elsevier, vol. 8(3), pages 393-411, November.
    11. Milevsky, Moshe A. & David Promislow, S., 2001. "Mortality derivatives and the option to annuitise," Insurance: Mathematics and Economics, Elsevier, vol. 29(3), pages 299-318, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Cristina CIUMAȘ & Diana-Maria CHIȘ, 2015. "Modelling The Guarantee Liability Under Unit-Linked Contracts," SEA - Practical Application of Science, Romanian Foundation for Business Intelligence, Editorial Department, issue 7, pages 165-170, April.
    2. Li, Jing & Szimayer, Alexander, 2010. "The effect of policyholders' rationality on unit-linked life insurance contracts with surrender guarantees," Bonn Econ Discussion Papers 22/2010, University of Bonn, Bonn Graduate School of Economics (BGSE).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Jing & Szimayer, Alexander, 2011. "The uncertain mortality intensity framework: Pricing and hedging unit-linked life insurance contracts," Insurance: Mathematics and Economics, Elsevier, vol. 49(3), pages 471-486.
    2. Blake, David & Cairns, Andrew J.G., 2021. "Longevity risk and capital markets: The 2019-20 update," Insurance: Mathematics and Economics, Elsevier, vol. 99(C), pages 395-439.
    3. Chen, Bingzheng & Zhang, Lihong & Zhao, Lin, 2010. "On the robustness of longevity risk pricing," Insurance: Mathematics and Economics, Elsevier, vol. 47(3), pages 358-373, December.
    4. Tsai, Jeffrey T. & Wang, Jennifer L. & Tzeng, Larry Y., 2010. "On the optimal product mix in life insurance companies using conditional value at risk," Insurance: Mathematics and Economics, Elsevier, vol. 46(1), pages 235-241, February.
    5. Blake, David & El Karoui, Nicole & Loisel, Stéphane & MacMinn, Richard, 2018. "Longevity risk and capital markets: The 2015–16 update," Insurance: Mathematics and Economics, Elsevier, vol. 78(C), pages 157-173.
    6. Bravo, Jorge M. & Ayuso, Mercedes & Holzmann, Robert & Palmer, Edward, 2021. "Addressing the life expectancy gap in pension policy," Insurance: Mathematics and Economics, Elsevier, vol. 99(C), pages 200-221.
    7. Jevtić, Petar & Luciano, Elisa & Vigna, Elena, 2013. "Mortality surface by means of continuous time cohort models," Insurance: Mathematics and Economics, Elsevier, vol. 53(1), pages 122-133.
    8. Wang, Ting & Young, Virginia R., 2016. "Hedging pure endowments with mortality derivatives," Insurance: Mathematics and Economics, Elsevier, vol. 69(C), pages 238-255.
    9. Shen, Yang & Siu, Tak Kuen, 2013. "Longevity bond pricing under stochastic interest rate and mortality with regime-switching," Insurance: Mathematics and Economics, Elsevier, vol. 52(1), pages 114-123.
    10. Eckhard Platen, 2009. "Real World Pricing of Long Term Contracts," Research Paper Series 262, Quantitative Finance Research Centre, University of Technology, Sydney.
    11. Cox, Samuel H. & Lin, Yijia & Pedersen, Hal, 2010. "Mortality risk modeling: Applications to insurance securitization," Insurance: Mathematics and Economics, Elsevier, vol. 46(1), pages 242-253, February.
    12. Russo, Vincenzo & Giacometti, Rosella & Ortobelli, Sergio & Rachev, Svetlozar & Fabozzi, Frank J., 2011. "Calibrating affine stochastic mortality models using term assurance premiums," Insurance: Mathematics and Economics, Elsevier, vol. 49(1), pages 53-60, July.
    13. Chen An & Mahayni Antje B., 2008. "Endowment Assurance Products: Effectiveness of Risk-Minimizing Strategies under Model Risk," Asia-Pacific Journal of Risk and Insurance, De Gruyter, vol. 2(2), pages 1-29, March.
    14. Virginia R. Young, 2007. "Pricing Life Insurance under Stochastic Mortality via the Instantaneous Sharpe Ratio: Theorems and Proofs," Papers 0705.1297, arXiv.org.
    15. Matheus R Grasselli & Sebastiano Silla, 2009. "A policyholder's utility indifference valuation model for the guaranteed annuity option," Papers 0908.3196, arXiv.org.
    16. Homa Magdalena, 2020. "Mathematical Reserves vs Longevity Risk in Life Insurances," Econometrics. Advances in Applied Data Analysis, Sciendo, vol. 24(1), pages 23-38, March.
    17. Jennifer L. Wang & H.C. Huang & Sharon S. Yang & Jeffrey T. Tsai, 2010. "An Optimal Product Mix for Hedging Longevity Risk in Life Insurance Companies: The Immunization Theory Approach," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 77(2), pages 473-497, June.
    18. Ludkovski, Michael & Young, Virginia R., 2008. "Indifference pricing of pure endowments and life annuities under stochastic hazard and interest rates," Insurance: Mathematics and Economics, Elsevier, vol. 42(1), pages 14-30, February.
    19. Lee, Yung-Tsung & Wang, Chou-Wen & Huang, Hong-Chih, 2012. "On the valuation of reverse mortgages with regular tenure payments," Insurance: Mathematics and Economics, Elsevier, vol. 51(2), pages 430-441.
    20. Jevtić, Petar & Regis, Luca, 2019. "A continuous-time stochastic model for the mortality surface of multiple populations," Insurance: Mathematics and Economics, Elsevier, vol. 88(C), pages 181-195.

    More about this item

    Keywords

    unit-linked life insurance contracts; mortality model risk; price bounds; stochastic control;
    All these keywords.

    JEL classification:

    • G13 - Financial Economics - - General Financial Markets - - - Contingent Pricing; Futures Pricing
    • G22 - Financial Economics - - Financial Institutions and Services - - - Insurance; Insurance Companies; Actuarial Studies
    • C61 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Optimization Techniques; Programming Models; Dynamic Analysis

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:zbw:bonedp:132010. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ZBW - Leibniz Information Centre for Economics (email available below). General contact details of provider: https://edirc.repec.org/data/gsbonde.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.