IDEAS home Printed from https://ideas.repec.org/p/yor/yorken/02-09.html
   My bibliography  Save this paper

Data Augmentation in Limited-Dependent Variable Models

Author

Listed:
  • Roberto Leon-Gonzalez

Abstract

This paper proposes a scheme that speeds up the convergence of Markov Chain Monte Carlo (MCMC) algorithms in the context of limited-dependent variable models. The algorithm reduces autocorrelations more than the recently proposed Parameter Expansion Data Augumentation (PX-DA) algorithm. In addition, the paper provides an algorithm to sample a variance-covariance matrix with restrictions directly from the conditional posterior distribution. Finally, it is shown that the PX-DA algorithm, as applied to the multivariate probit model, can be seen as sampling from a different parameterization of the model. However, in some cases the PX-DA algorithm is not invariant to reparameterizations, and a slightly different algorithm is proposed.

Suggested Citation

  • Roberto Leon-Gonzalez, "undated". "Data Augmentation in Limited-Dependent Variable Models," Discussion Papers 02/09, Department of Economics, University of York.
  • Handle: RePEc:yor:yorken:02/09
    as

    Download full text from publisher

    File URL: https://www.york.ac.uk/media/economics/documents/discussionpapers/2002/0209.pdf
    File Function: Main text
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Amit, Yali, 1991. "On rates of convergence of stochastic relaxation for Gaussian and non-Gaussian distributions," Journal of Multivariate Analysis, Elsevier, vol. 38(1), pages 82-99, July.
    2. McCulloch, Robert E. & Polson, Nicholas G. & Rossi, Peter E., 2000. "A Bayesian analysis of the multinomial probit model with fully identified parameters," Journal of Econometrics, Elsevier, vol. 99(1), pages 173-193, November.
    3. Bauwens, Luc & Lubrano, Michel & Richard, Jean-Francois, 2000. "Bayesian Inference in Dynamic Econometric Models," OUP Catalogue, Oxford University Press, number 9780198773139.
    4. Nobile, Agostino, 2000. "Comment: Bayesian multinomial probit models with a normalization constraint," Journal of Econometrics, Elsevier, vol. 99(2), pages 335-345, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Xiao & Boscardin, W. John & Belin, Thomas R., 2008. "Bayesian analysis of multivariate nominal measures using multivariate multinomial probit models," Computational Statistics & Data Analysis, Elsevier, vol. 52(7), pages 3697-3708, March.
    2. Daziano, Ricardo A., 2015. "Inference on mode preferences, vehicle purchases, and the energy paradox using a Bayesian structural choice model," Transportation Research Part B: Methodological, Elsevier, vol. 76(C), pages 1-26.
    3. Gary Koop, 2004. "Modelling the evolution of distributions: an application to Major League baseball," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 167(4), pages 639-655, November.
    4. Li, Mingliang & Mumford, Kevin J. & Tobias, Justin L., 2012. "A Bayesian analysis of payday loans and their regulation," Journal of Econometrics, Elsevier, vol. 171(2), pages 205-216.
    5. Moffa, Giusi & Kuipers, Jack, 2014. "Sequential Monte Carlo EM for multivariate probit models," Computational Statistics & Data Analysis, Elsevier, vol. 72(C), pages 252-272.
    6. Ricardo A. Daziano & Martin Achtnicht, 2014. "Forecasting Adoption of Ultra-Low-Emission Vehicles Using Bayes Estimates of a Multinomial Probit Model and the GHK Simulator," Transportation Science, INFORMS, vol. 48(4), pages 671-683, November.
    7. Yiyi Wang & Kara Kockelman & Paul Damien, 2014. "A spatial autoregressive multinomial probit model for anticipating land-use change in Austin, Texas," The Annals of Regional Science, Springer;Western Regional Science Association, vol. 52(1), pages 251-278, January.
    8. Dogan, Osman & Taspinar, Suleyman, 2016. "Bayesian Inference in Spatial Sample Selection Models," MPRA Paper 82829, University Library of Munich, Germany.
    9. Daziano, Ricardo A. & Achtnicht, Martin, 2012. "Forecasting adoption of ultra-low-emission vehicles using the GHK simulator and Bayes estimates of a multinomial probit model," ZEW Discussion Papers 12-017, ZEW - Leibniz Centre for European Economic Research.
    10. Mohamed Lachaab & Asim Ansari & Kamel Jedidi & Abdelwahed Trabelsi, 2006. "Modeling preference evolution in discrete choice models: A Bayesian state-space approach," Quantitative Marketing and Economics (QME), Springer, vol. 4(1), pages 57-81, March.
    11. Wang, Xiaokun (Cara) & Kockelman, Kara M. & Lemp, Jason D., 2012. "The dynamic spatial multinomial probit model: analysis of land use change using parcel-level data," Journal of Transport Geography, Elsevier, vol. 24(C), pages 77-88.
    12. Ricardo A. Daziano & Luis Miranda-Moreno & Shahram Heydari, 2013. "Computational Bayesian Statistics in Transportation Modeling: From Road Safety Analysis to Discrete Choice," Transport Reviews, Taylor & Francis Journals, vol. 33(5), pages 570-592, September.
    13. Peter Lenk, 2014. "Bayesian estimation of random utility models," Chapters, in: Stephane Hess & Andrew Daly (ed.), Handbook of Choice Modelling, chapter 20, pages 457-497, Edward Elgar Publishing.
    14. Munkin, Murat K. & Trivedi, Pravin K., 2003. "Bayesian analysis of a self-selection model with multiple outcomes using simulation-based estimation: an application to the demand for healthcare," Journal of Econometrics, Elsevier, vol. 114(2), pages 197-220, June.
    15. Duncan Fong & Sunghoon Kim & Zhe Chen & Wayne DeSarbo, 2016. "A Bayesian Multinomial Probit MODEL FOR THE ANALYSIS OF PANEL CHOICE DATA," Psychometrika, Springer;The Psychometric Society, vol. 81(1), pages 161-183, March.
    16. Aßmann, Christian, 2007. "Determinants and Costs of Current Account Reversals under Heterogeneity and Serial Correlation," Economics Working Papers 2007-17, Christian-Albrechts-University of Kiel, Department of Economics.
    17. Imai, Kosuke & van Dyk, David A., 2005. "A Bayesian analysis of the multinomial probit model using marginal data augmentation," Journal of Econometrics, Elsevier, vol. 124(2), pages 311-334, February.
    18. Paleti, Rajesh, 2018. "Generalized multinomial probit Model: Accommodating constrained random parameters," Transportation Research Part B: Methodological, Elsevier, vol. 118(C), pages 248-262.
    19. Rub'en Loaiza-Maya & Didier Nibbering, 2022. "Fast variational Bayes methods for multinomial probit models," Papers 2202.12495, arXiv.org, revised Oct 2022.
    20. Robert Zeithammer & Peter Lenk, 2006. "Bayesian estimation of multivariate-normal models when dimensions are absent," Quantitative Marketing and Economics (QME), Springer, vol. 4(3), pages 241-265, September.

    More about this item

    Keywords

    data augmentation; parameter-expansion-data-augmentation; inverted wishart; multivariate probit; reparameterization.;
    All these keywords.

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:yor:yorken:02/09. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Paul Hodgson (email available below). General contact details of provider: https://edirc.repec.org/data/deyoruk.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.