IDEAS home Printed from https://ideas.repec.org/p/wuu/wpaper/hsc0803.html
   My bibliography  Save this paper

Modelling energy forward prices

Author

Listed:
  • Joanna Janczura
  • Aleksander Weron

Abstract

The main purpose of the paper is to present, how derivatives valuing methodology, known from financial and commodities markets, can be applied to the electricity market. We compare an application of three recent models. We start with the convenience yield approach, then we analyse the application of the interest rates methodology, proposed by Hinz et al. (2005). Finally, the last approach built by Bjerksund et al (2000) on direct modelling of the forward price dynamics is discussed. We also calibrate the theoretical models to the Nord Pool market data. The empirical analysis shows how these models can be used for evaluation of options prices. Moreover, data study gives an evidence of the seasonal term structure of the returns variance.

Suggested Citation

  • Joanna Janczura & Aleksander Weron, 2008. "Modelling energy forward prices," HSC Research Reports HSC/08/03, Hugo Steinhaus Center, Wroclaw University of Science and Technology.
  • Handle: RePEc:wuu:wpaper:hsc0803
    as

    Download full text from publisher

    File URL: http://www.im.pwr.wroc.pl/~hugo/RePEc/wuu/wpaper/HSC_08_03.pdf
    File Function: Original draft, 2008
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Les Clewlow & Chris Strickland, 1999. "Valuing Energy Options in a One Factor Model Fitted to Forward Prices," Research Paper Series 10, Quantitative Finance Research Centre, University of Technology, Sydney.
    2. Miltersen, Kristian R. & Schwartz, Eduardo S., 1998. "Pricing of Options on Commodity Futures with Stochastic Term Structures of Convenience Yields and Interest Rates," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 33(1), pages 33-59, March.
    3. Ewa Broszkiewicz-Suwaj & Aleksander Weron, 2005. "Calibration of the multifactor HJM model for energy market," HSC Research Reports HSC/05/03, Hugo Steinhaus Center, Wroclaw University of Science and Technology.
    4. repec:dau:papers:123456789/607 is not listed on IDEAS
    5. Juri Hinz & Lutz Von Grafenstein & Michel Verschuere & Martina Wilhelm, 2005. "Pricing electricity risk by interest rate methods," Quantitative Finance, Taylor & Francis Journals, vol. 5(1), pages 49-60.
    6. Rafal Weron, 2006. "Modeling and Forecasting Electricity Loads and Prices: A Statistical Approach," HSC Books, Hugo Steinhaus Center, Wroclaw University of Science and Technology, number hsbook0601, December.
    7. Helyette Geman, 2005. "Commodities and Commodity Derivatives. Modeling and Pricing for Agriculturals, Metals and Energy," Post-Print halshs-00144182, HAL.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rudiger Kiesel & Gero Schindlmayr & Reik Borger, 2009. "A two-factor model for the electricity forward market," Quantitative Finance, Taylor & Francis Journals, vol. 9(3), pages 279-287.
    2. Fred Espen Benth & Marco Piccirilli & Tiziano Vargiolu, 2017. "Additive energy forward curves in a Heath-Jarrow-Morton framework," Papers 1709.03310, arXiv.org, revised Jun 2018.
    3. Fred Espen Benth & Jūratė Šaltytė Benth & Steen Koekebakker, 2008. "Stochastic Modeling of Electricity and Related Markets," World Scientific Books, World Scientific Publishing Co. Pte. Ltd., number 6811, August.
    4. Hinderks, W.J. & Wagner, A., 2020. "Factor models in the German electricity market: Stylized facts, seasonality, and calibration," Energy Economics, Elsevier, vol. 85(C).
    5. Algieri, Bernardina & Leccadito, Arturo & Tunaru, Diana, 2021. "Risk premia in electricity derivatives markets," Energy Economics, Elsevier, vol. 100(C).
    6. de Jong, C.M. & Huisman, R., 2002. "Option Formulas for Mean-Reverting Power Prices with Spikes," ERIM Report Series Research in Management ERS-2002-96-F&A, Erasmus Research Institute of Management (ERIM), ERIM is the joint research institute of the Rotterdam School of Management, Erasmus University and the Erasmus School of Economics (ESE) at Erasmus University Rotterdam.
    7. de Jong, C.M., 2005. "The Nature of Power Spikes: a regime-switch approach," ERIM Report Series Research in Management ERS-2005-052-F&A, Erasmus Research Institute of Management (ERIM), ERIM is the joint research institute of the Rotterdam School of Management, Erasmus University and the Erasmus School of Economics (ESE) at Erasmus University Rotterdam.
    8. Weber, Florian & Schmid, Thomas & Pietz, Matthäus & Kaserer, Christoph, 2010. "Simulation-based valuation of project finance: does model complexity really matter?," CEFS Working Paper Series 2010-03, Technische Universität München (TUM), Center for Entrepreneurial and Financial Studies (CEFS).
    9. Lyle, Matthew R. & Elliott, Robert J., 2009. "A 'simple' hybrid model for power derivatives," Energy Economics, Elsevier, vol. 31(5), pages 757-767, September.
    10. Joanna Janczura, 2012. "Pricing electricity derivatives within a Markov regime-switching model," Papers 1203.5442, arXiv.org.
    11. Bisht Deepak & Laha, A. K., 2017. "Pricing Option on Commodity Futures under String Shock," IIMA Working Papers WP 2017-07-02, Indian Institute of Management Ahmedabad, Research and Publication Department.
    12. Magdalena Borgosz-Koczwara & Aleksander Weron & Agnieszka Wyłomańska, 2009. "Stochastic models for bidding strategies on oligopoly electricity market," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 69(3), pages 579-592, July.
    13. Lingfei Li & Vadim Linetsky, 2012. "Time-Changed Ornstein-Uhlenbeck Processes And Their Applications In Commodity Derivative Models," Papers 1204.3679, arXiv.org.
    14. Juri Hinz, 2006. "Valuing virtual production capacities on flow commodities," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 64(2), pages 187-209, October.
    15. Arnaud Porchet & Nizar Touzi & Xavier Warin, 2009. "Valuation of power plants by utility indifference and numerical computation," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 70(1), pages 47-75, August.
    16. Benjamin Tin Chun Cheng, 2017. "Pricing and Hedging of Long-Dated Commodity Derivatives," PhD Thesis, Finance Discipline Group, UTS Business School, University of Technology, Sydney, number 2-2017, January-A.
    17. Chantziara, Thalia & Skiadopoulos, George, 2008. "Can the dynamics of the term structure of petroleum futures be forecasted? Evidence from major markets," Energy Economics, Elsevier, vol. 30(3), pages 962-985, May.
    18. Juri Hinz & Tanya Tarnopolskaya & Jeremy Yee, 2020. "Efficient algorithms of pathwise dynamic programming for decision optimization in mining operations," Annals of Operations Research, Springer, vol. 286(1), pages 583-615, March.
    19. Chih-Chen Hsu & An-Sing Chen & Shih-Kuei Lin & Ting-Fu Chen, 2017. "The affine styled-facts price dynamics for the natural gas: evidence from daily returns and option prices," Review of Quantitative Finance and Accounting, Springer, vol. 48(3), pages 819-848, April.
    20. Joanna Janczura, 2014. "Pricing electricity derivatives within a Markov regime-switching model: a risk premium approach," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 79(1), pages 1-30, February.

    More about this item

    Keywords

    Forward contracts; Nord Pool financial market; Options valuation; Volatility modelling;
    All these keywords.

    JEL classification:

    • G13 - Financial Economics - - General Financial Markets - - - Contingent Pricing; Futures Pricing
    • Q41 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - Demand and Supply; Prices

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wuu:wpaper:hsc0803. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Rafal Weron (email available below). General contact details of provider: https://edirc.repec.org/data/hspwrpl.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.