IDEAS home Printed from https://ideas.repec.org/a/spr/mathme/v64y2006i2p187-209.html
   My bibliography  Save this article

Valuing virtual production capacities on flow commodities

Author

Listed:
  • Juri Hinz

Abstract

As a result of storability restrictions, the price risk management of flow commodities (such as natural gas, oil, and electrical power) is by no means a trivial matter.To protect price spikes, consumers purchase diverse swing-type contracts, whereas contract writers try to hedge themselves by appropriate physical assets, for instance, using storage utilities, through transmission and/or production capacities. However, the correct valuation of such contacts and their physical counterparts is still under lively debate. In this approach, an axiomatic setting to discuss price dynamics for flow commodity contracts is suggested. By means of a minimal set of reasonable assumptions we suggest a framework where the standard change-of-numeraire transformation converts a flow commodity market into a market consisting of zero bonds and some additional risky asset. Utilizing this structure, we apply the toolkit of interest rate theory to price the availability of production capacity on a flow commodity. Copyright Springer-Verlag 2006

Suggested Citation

  • Juri Hinz, 2006. "Valuing virtual production capacities on flow commodities," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 64(2), pages 187-209, October.
  • Handle: RePEc:spr:mathme:v:64:y:2006:i:2:p:187-209
    DOI: 10.1007/s00186-006-0087-z
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s00186-006-0087-z
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s00186-006-0087-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Schwartz, Eduardo S, 1997. "The Stochastic Behavior of Commodity Prices: Implications for Valuation and Hedging," Journal of Finance, American Finance Association, vol. 52(3), pages 923-973, July.
    2. M. T. Barlow, 2002. "A Diffusion Model For Electricity Prices," Mathematical Finance, Wiley Blackwell, vol. 12(4), pages 287-298, October.
    3. Gibson, Rajna & Schwartz, Eduardo S, 1990. "Stochastic Convenience Yield and the Pricing of Oil Contingent Claims," Journal of Finance, American Finance Association, vol. 45(3), pages 959-976, July.
    4. Miltersen, Kristian R. & Schwartz, Eduardo S., 1998. "Pricing of Options on Commodity Futures with Stochastic Term Structures of Convenience Yields and Interest Rates," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 33(1), pages 33-59, March.
    5. Eugene F. Fama & Kenneth R. French, 2015. "Commodity Futures Prices: Some Evidence on Forecast Power, Premiums, and the Theory of Storage," World Scientific Book Chapters, in: Anastasios G Malliaris & William T Ziemba (ed.), THE WORLD SCIENTIFIC HANDBOOK OF FUTURES MARKETS, chapter 4, pages 79-102, World Scientific Publishing Co. Pte. Ltd..
    6. Juri Hinz & Lutz Von Grafenstein & Michel Verschuere & Martina Wilhelm, 2005. "Pricing electricity risk by interest rate methods," Quantitative Finance, Taylor & Francis Journals, vol. 5(1), pages 49-60.
    7. Juri Hinz, 2003. "Modelling day-ahead electricity prices," Applied Mathematical Finance, Taylor & Francis Journals, vol. 10(2), pages 149-161.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Doege, Jörg & Fehr, Max & Hinz, Juri & Lüthi, Hans-Jakob & Wilhelm, Martina, 2009. "Risk management in power markets: The Hedging value of production flexibility," European Journal of Operational Research, Elsevier, vol. 199(3), pages 936-943, December.
    2. Fanelli, Viviana & Maddalena, Lucia & Musti, Silvana, 2016. "Modelling electricity futures prices using seasonal path-dependent volatility," Applied Energy, Elsevier, vol. 173(C), pages 92-102.
    3. Nadarajah, Selvaprabu & Secomandi, Nicola, 2023. "A review of the operations literature on real options in energy," European Journal of Operational Research, Elsevier, vol. 309(2), pages 469-487.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jilong Chen & Christian Ewald & Ruolan Ouyang & Sjur Westgaard & Xiaoxia Xiao, 2022. "Pricing commodity futures and determining risk premia in a three factor model with stochastic volatility: the case of Brent crude oil," Annals of Operations Research, Springer, vol. 313(1), pages 29-46, June.
    2. Björn Lutz, 2010. "Pricing of Derivatives on Mean-Reverting Assets," Lecture Notes in Economics and Mathematical Systems, Springer, number 978-3-642-02909-7, October.
    3. Mirantes, Andrés García & Población, Javier & Serna, Gregorio, 2013. "The stochastic seasonal behavior of energy commodity convenience yields," Energy Economics, Elsevier, vol. 40(C), pages 155-166.
    4. Richter, Martin & Sørensen, Carsten, 2002. "Stochastic Volatility and Seasonality in Commodity Futures and Options: The Case of Soybeans," Working Papers 2002-4, Copenhagen Business School, Department of Finance.
    5. Chen, Fan & Linn, Scott C., 2017. "Investment and operating choice: Oil and natural gas futures prices and drilling activity," Energy Economics, Elsevier, vol. 66(C), pages 54-68.
    6. Calum G. Turvey, 2006. "Managing food industry business and financial risks with commodity-linked credit instruments," Agribusiness, John Wiley & Sons, Ltd., vol. 22(4), pages 523-545.
    7. Bisht Deepak & Laha, A. K., 2017. "Pricing Option on Commodity Futures under String Shock," IIMA Working Papers WP 2017-07-02, Indian Institute of Management Ahmedabad, Research and Publication Department.
    8. Robert Jarrow, 2010. "Convenience yields," Review of Derivatives Research, Springer, vol. 13(1), pages 25-43, April.
    9. Alvaro Cartea & Marcelo Figueroa & Helyette Geman, 2009. "Modelling Electricity Prices with Forward Looking Capacity Constraints," Applied Mathematical Finance, Taylor & Francis Journals, vol. 16(2), pages 103-122.
    10. Ma, Zonggang & Ma, Chaoqun & Wu, Zhijian, 2020. "Closed-form analytical solutions for options on agricultural futures with seasonality and stochastic convenience yield," Chaos, Solitons & Fractals, Elsevier, vol. 137(C).
    11. Thomas Bollinger & Axel Kind, 2015. "Risk Premiums in the Cross-Section of Commodity Convenience Yields," Working Paper Series of the Department of Economics, University of Konstanz 2015-17, Department of Economics, University of Konstanz.
    12. Anh Ngoc Lai & Constantin Mellios, 2016. "Valuation of commodity derivatives with an unobservable convenience yield," Post-Print halshs-01183166, HAL.
    13. Fred Espen Benth & Jūratė Šaltytė Benth & Steen Koekebakker, 2008. "Stochastic Modeling of Electricity and Related Markets," World Scientific Books, World Scientific Publishing Co. Pte. Ltd., number 6811, December.
    14. Zonggang Ma & Chaoqun Ma & Zhijian Wu, 2022. "Pricing commodity-linked bonds with stochastic convenience yield, interest rate and counterparty credit risk: application of Mellin transform methods," Review of Derivatives Research, Springer, vol. 25(1), pages 47-91, April.
    15. Deschatre, Thomas & Féron, Olivier & Gruet, Pierre, 2021. "A survey of electricity spot and futures price models for risk management applications," Energy Economics, Elsevier, vol. 102(C).
    16. Secomandi, Nicola & Seppi, Duane J., 2014. "Real Options and Merchant Operations of Energy and Other Commodities," Foundations and Trends(R) in Technology, Information and Operations Management, now publishers, vol. 6(3-4), pages 161-331, July.
    17. Paschke, Raphael & Prokopczuk, Marcel, 2010. "Commodity derivatives valuation with autoregressive and moving average components in the price dynamics," Journal of Banking & Finance, Elsevier, vol. 34(11), pages 2742-2752, November.
    18. Chiarella, Carl & Kang, Boda & Nikitopoulos, Christina Sklibosios & Tô, Thuy-Duong, 2013. "Humps in the volatility structure of the crude oil futures market: New evidence," Energy Economics, Elsevier, vol. 40(C), pages 989-1000.
    19. Steffen Volkenand & Günther Filler & Martin Odening, 2020. "Price Discovery and Market Reflexivity in Agricultural Futures Contracts with Different Maturities," Risks, MDPI, vol. 8(3), pages 1-17, July.
    20. Back, Janis & Prokopczuk, Marcel & Rudolf, Markus, 2013. "Seasonality and the valuation of commodity options," Journal of Banking & Finance, Elsevier, vol. 37(2), pages 273-290.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:mathme:v:64:y:2006:i:2:p:187-209. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.