IDEAS home Printed from https://ideas.repec.org/p/wrk/warwec/1412.html
   My bibliography  Save this paper

Estimating the Gains (and Losses) of Revenue Management

Author

Listed:
  • D’Haultfoeuille, Xavier

    (CREST-ENSAE)

  • Wang, Ao

    (University of Warwick and CAGE)

  • Février, Philippe

    (CREST)

  • Wilner, Lionel

    (CREST)

Abstract

Despite the wide adoption of revenue management in many industries such as airline, railway, and hospitality, there is still scarce empirical evidence on the gains or losses of such strategies compared to uniform pricing or fully flexible strategies. We quantify such gains and losses and identify their underlying sources in the context of French railway transportation. The identification of demand is complicated by censoring and the absence of exogenous price variations. We develop an original identification strategy combining temporal variations in relative prices, consumers’ rationality and weak optimality conditions on the firm’s pricing strategy. Our results suggest similar or better performance of the actual revenue management compared to optimal uniform pricing, but also substantial losses of up to 16.2% compared to the optimal pricing strategy. We also highlight the key role of revenue management in acquiring information when demand is uncertain.

Suggested Citation

  • D’Haultfoeuille, Xavier & Wang, Ao & Février, Philippe & Wilner, Lionel, 2022. "Estimating the Gains (and Losses) of Revenue Management," The Warwick Economics Research Paper Series (TWERPS) 1412, University of Warwick, Department of Economics.
  • Handle: RePEc:wrk:warwec:1412
    as

    Download full text from publisher

    File URL: https://warwick.ac.uk/fac/soc/economics/research/workingpapers/2022/twerp_1412_-_wang.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Guillermo Gallego & Garrett van Ryzin, 1994. "Optimal Dynamic Pricing of Inventories with Stochastic Demand over Finite Horizons," Management Science, INFORMS, vol. 40(8), pages 999-1020, August.
    2. Wardman, Mark, 1997. "Inter-urban rail demand, elasticities and competition in Great Britain: Evidence from direct demand models," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 33(1), pages 15-28, March.
    3. S. L. Brumelle & J. I. McGill, 1993. "Airline Seat Allocation with Multiple Nested Fare Classes," Operations Research, INFORMS, vol. 41(1), pages 127-137, February.
    4. Youyi Feng & Guillermo Gallego, 1995. "Optimal Starting Times for End-of-Season Sales and Optimal Stopping Times for Promotional Fares," Management Science, INFORMS, vol. 41(8), pages 1371-1391, August.
    5. John Rust & Sungjin Cho, 2018. "Optimal Dynamic Hotel Pricing," 2018 Meeting Papers 179, Society for Economic Dynamics.
    6. Kevin R. Williams, 2022. "The Welfare Effects of Dynamic Pricing: Evidence From Airline Markets," Econometrica, Econometric Society, vol. 90(2), pages 831-858, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ali Hortacsu & Olivia R. Natan & Hayden Parsley & Timothy Schwieg & Kevin R. Williams, 2021. "Organizational Structure and Pricing: Evidence from a Large U.S. Airline," Cowles Foundation Discussion Papers 2312R4, Cowles Foundation for Research in Economics, Yale University, revised Jun 2023.
    2. Chatwin, Richard E., 2000. "Optimal dynamic pricing of perishable products with stochastic demand and a finite set of prices," European Journal of Operational Research, Elsevier, vol. 125(1), pages 149-174, August.
    3. X. D'Haultfoeuille & P. Fevrier & L. Wilner, 2012. "Demand Estimation in the Presence of Revenue Management," Documents de Travail de l'Insee - INSEE Working Papers g2012-13, Institut National de la Statistique et des Etudes Economiques.
    4. Kalyan Talluri & Garrett van Ryzin, 2000. "Revenue management under general discrete choice model of consumer behavior," Economics Working Papers 533, Department of Economics and Business, Universitat Pompeu Fabra, revised Oct 2001.
    5. Pak, K. & Piersma, N., 2002. "airline revenue management," ERIM Report Series Research in Management ERS-2002-12-LIS, Erasmus Research Institute of Management (ERIM), ERIM is the joint research institute of the Rotterdam School of Management, Erasmus University and the Erasmus School of Economics (ESE) at Erasmus University Rotterdam.
    6. Pak, K. & Piersma, N., 2002. "Airline revenue management: an overview of OR techniques 1982-2001," Econometric Institute Research Papers EI 2002-03, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    7. Youyi Feng & Baichun Xiao, 2001. "A Dynamic Airline Seat Inventory Control Model and Its Optimal Policy," Operations Research, INFORMS, vol. 49(6), pages 938-949, December.
    8. Syed Asif Raza & Rafi Ashrafi & Ali Akgunduz, 2020. "A bibliometric analysis of revenue management in airline industry," Journal of Revenue and Pricing Management, Palgrave Macmillan, vol. 19(6), pages 436-465, December.
    9. Jeffrey I. McGill & Garrett J. van Ryzin, 1999. "Revenue Management: Research Overview and Prospects," Transportation Science, INFORMS, vol. 33(2), pages 233-256, May.
    10. Kyle Y. Lin, 2004. "A sequential dynamic pricing model and its applications," Naval Research Logistics (NRL), John Wiley & Sons, vol. 51(4), pages 501-521, June.
    11. Kalyan Talluri & Garrett van Ryzin, 1998. "An Analysis of Bid-Price Controls for Network Revenue Management," Management Science, INFORMS, vol. 44(11-Part-1), pages 1577-1593, November.
    12. Namin, Aidin & Soysal, Gonca P. & Ratchford, Brian T., 2022. "Alleviating demand uncertainty for seasonal goods: An analysis of attribute-based markdown policy for fashion retailers," Journal of Business Research, Elsevier, vol. 145(C), pages 671-681.
    13. Adam J. Mersereau & Dan Zhang, 2012. "Markdown Pricing with Unknown Fraction of Strategic Customers," Manufacturing & Service Operations Management, INFORMS, vol. 14(3), pages 355-370, July.
    14. Wedad Elmaghraby & Altan Gülcü & P{i}nar Keskinocak, 2008. "Designing Optimal Preannounced Markdowns in the Presence of Rational Customers with Multiunit Demands," Manufacturing & Service Operations Management, INFORMS, vol. 10(1), pages 126-148, June.
    15. Christian Borgs & Ozan Candogan & Jennifer Chayes & Ilan Lobel & Hamid Nazerzadeh, 2014. "Optimal Multiperiod Pricing with Service Guarantees," Management Science, INFORMS, vol. 60(7), pages 1792-1811, July.
    16. Sen, Alper & Zhang, Alex X., 2009. "Style goods pricing with demand learning," European Journal of Operational Research, Elsevier, vol. 196(3), pages 1058-1075, August.
    17. Nair, Anand & Closs, David J., 2006. "An examination of the impact of coordinating supply chain policies and price markdowns on short lifecycle product retail performance," International Journal of Production Economics, Elsevier, vol. 102(2), pages 379-392, August.
    18. Qian Liu & Garrett J. van Ryzin, 2008. "Strategic Capacity Rationing to Induce Early Purchases," Management Science, INFORMS, vol. 54(6), pages 1115-1131, June.
    19. Wang, Xiubin & Regan, Amelia, 2006. "Dynamic yield management when aircraft assignments are subject to swap," Transportation Research Part B: Methodological, Elsevier, vol. 40(7), pages 563-576, August.
    20. Youyi Feng & Baichun Xiao, 2000. "A Continuous-Time Yield Management Model with Multiple Prices and Reversible Price Changes," Management Science, INFORMS, vol. 46(5), pages 644-657, May.

    More about this item

    Keywords

    Revenue management ; dynamic pricing ; demand estimation ; demand learning ; moment inequalities JEL Codes: C25 ; C61 ; D12 ; R40;
    All these keywords.

    JEL classification:

    • C25 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Discrete Regression and Qualitative Choice Models; Discrete Regressors; Proportions; Probabilities
    • C61 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Optimization Techniques; Programming Models; Dynamic Analysis

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wrk:warwec:1412. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Margaret Nash (email available below). General contact details of provider: https://edirc.repec.org/data/dewaruk.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.