IDEAS home Printed from https://ideas.repec.org/p/wpa/wuwpfi/9904005.html
   My bibliography  Save this paper

A Survey on Nonparametric Time Series Analysis

Author

Listed:
  • Siegfried Heiler

    (Center of Finance and Econometrics)

Abstract

No abstract is available for this item.

Suggested Citation

  • Siegfried Heiler, 1999. "A Survey on Nonparametric Time Series Analysis," Finance 9904005, University Library of Munich, Germany.
  • Handle: RePEc:wpa:wuwpfi:9904005
    Note: 49 pages
    as

    Download full text from publisher

    File URL: https://econwpa.ub.uni-muenchen.de/econ-wp/fin/papers/9904/9904005.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Lijian Yang & Wolfgang Hardle & Jens Nielsen, 1999. "Nonparametric Autoregression with Multiplicative Volatility and Additive mean," Journal of Time Series Analysis, Wiley Blackwell, vol. 20(5), pages 579-604, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mayte Suarez -Farinas & Carlos E. Pedreira & Marcelo C. Medeiros, 2004. "Local Global Neural Networks: A New Approach for Nonlinear Time Series Modeling," Journal of the American Statistical Association, American Statistical Association, vol. 99, pages 1092-1107, December.
    2. Holtemöller, Oliver & Kozyrev, Boris, 2024. "Forecasting economic activity using a neural network in uncertain times: Monte Carlo evidence and application to the German GDP," IWH Discussion Papers 6/2024, Halle Institute for Economic Research (IWH).
    3. Norberto Rodríguez N. & Patricia Siado C., 2003. "Un Pronóstico no Paramétrico de la Inflación Colombiana," Borradores de Economia 248, Banco de la Republica de Colombia.
    4. Tao Chen & Yixuan Li & Renfang Tian, 2023. "A Functional Data Approach for Continuous-Time Analysis Subject to Modeling Discrepancy under Infill Asymptotics," Mathematics, MDPI, vol. 11(20), pages 1-27, October.
    5. Holtemöller, Oliver & Kozyrev, Boris, 2023. "Forecasting Economic Activity with a Neural Network in Uncertain Times: Monte Carlo Evidence and Application to German GDP," VfS Annual Conference 2023 (Regensburg): Growth and the "sociale Frage" 277688, Verein für Socialpolitik / German Economic Association.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gozalo, Pedro L. & Linton, Oliver B., 2001. "Testing additivity in generalized nonparametric regression models with estimated parameters," Journal of Econometrics, Elsevier, vol. 104(1), pages 1-48, August.
    2. O. Linton & E. Mammen, 2005. "Estimating Semiparametric ARCH(∞) Models by Kernel Smoothing Methods," Econometrica, Econometric Society, vol. 73(3), pages 771-836, May.
    3. Buhlmann, Peter & McNeil, Alexander J., 2002. "An algorithm for nonparametric GARCH modelling," Computational Statistics & Data Analysis, Elsevier, vol. 40(4), pages 665-683, October.
    4. Linton, Oliver & Mammen, Enno, 2003. "Estimating semiparametric ARCH (8) models by kernel smoothing methods," LSE Research Online Documents on Economics 2187, London School of Economics and Political Science, LSE Library.
    5. Maria Mohr & Natalie Neumeyer, 2021. "Nonparametric volatility change detection," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 48(2), pages 529-548, June.
    6. Oliver Linton & E. Mammen & J. Nielsen, 1997. "The Existence and Asymptotic Properties of a Backfitting Projection Algorithm Under Weak Conditions," Cowles Foundation Discussion Papers 1160, Cowles Foundation for Research in Economics, Yale University.
    7. Heiler, Siegfried, 1999. "A Survey on Nonparametric Time Series Analysis," CoFE Discussion Papers 99/05, University of Konstanz, Center of Finance and Econometrics (CoFE).
    8. Rolf Tschernig & Lijian Yang, 2000. "Nonparametric Lag Selection for Time Series," Journal of Time Series Analysis, Wiley Blackwell, vol. 21(4), pages 457-487, July.
    9. Mohamed Chikhi & Claude Diebolt, 2010. "Nonparametric analysis of financial time series by the Kernel methodology," Quality & Quantity: International Journal of Methodology, Springer, vol. 44(5), pages 865-880, August.
    10. Neumeyer, Natalie & Omelka, Marek & Hudecová, Šárka, 2019. "A copula approach for dependence modeling in multivariate nonparametric time series," Journal of Multivariate Analysis, Elsevier, vol. 171(C), pages 139-162.
    11. Francesco Audrino & Peter Bühlmann, 2009. "Splines for financial volatility," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 71(3), pages 655-670, June.
    12. Kim, Woocheol & Linton, Oliver, 2003. "A local instrumental variable estimation method for generalized additive volatility models," LSE Research Online Documents on Economics 2028, London School of Economics and Political Science, LSE Library.
    13. Luca Bagnato & Lucio De Capitani & Antonio Punzo, 2014. "Detecting serial dependencies with the reproducibility probability autodependogram," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 98(1), pages 35-61, January.
    14. CHIKHI, Mohamed, 2017. "Chocs exogènes et non linéarités dans les séries boursières: Application à la modélisation non paramétrique du cours de l'action Orange [Exogenous Shocks and nonlinearity in the stock exchange seri," MPRA Paper 76691, University Library of Munich, Germany, revised 2017.
    15. Fengler, M.R. & Mammen, E. & Vogt, M., 2015. "Specification and structural break tests for additive models with applications to realized variance data," Journal of Econometrics, Elsevier, vol. 188(1), pages 196-218.
    16. Christian M. Hafner & Wolfgang HÄrdle, 2000. "Discrete time option pricing with flexible volatility estimation," Finance and Stochastics, Springer, vol. 4(2), pages 189-207.
    17. Oliver Linton & Pedro Gozalo, 1995. "Testing Additivity in Generalized Nonparametric Regression Models," Cowles Foundation Discussion Papers 1106, Cowles Foundation for Research in Economics, Yale University.
    18. CHIKHI, Mohamed, 2009. "Identification non paramétrique d’un processus non linéaire hétéroscédastique [Nonparametric identification of heteroscedastic nonlinear process]," MPRA Paper 82108, University Library of Munich, Germany, revised 2009.
    19. Lu, Zudi & Jiang, Zhenyu, 2001. "L1 geometric ergodicity of a multivariate nonlinear AR model with an ARCH term," Statistics & Probability Letters, Elsevier, vol. 51(2), pages 121-130, January.
    20. Chikhi, Mohamed & Terraza, Michel, 2002. "Un essai de prévision non paramétrique de l'action France Télécom [A nonparametric prediction test of the France Telecom stock proces]," MPRA Paper 77268, University Library of Munich, Germany, revised Dec 2003.

    More about this item

    JEL classification:

    • G - Financial Economics

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wpa:wuwpfi:9904005. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: EconWPA (email available below). General contact details of provider: https://econwpa.ub.uni-muenchen.de .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.