IDEAS home Printed from https://ideas.repec.org/p/wpa/wuwpfi/9712006.html
   My bibliography  Save this paper

No-Arbitrage Bounds on Contingent Claims Prices with Convex Constraints on the Dollar Investments of the Hedge Portfolio

Author

Listed:
  • Claus Munk

    (Odense University, Denmark)

Abstract

With constrained portfolios, contingent claims do not generally have a unique price, for which there are no arbitrage opportunities. We generalize earlier results of El Karoui and Quenez (1995) and Cvitanic and Karatzas (1993) by showing that there is an interval of no-arbitrage prices, when there are convex constraints on the dollar investments in the assets in the hedge portfolio. We also show that the bounds of the no-arbitrage interval can be found by solving two stochastic control problems, and we demonstrate how to solve these problems numerically.

Suggested Citation

  • Claus Munk, 1997. "No-Arbitrage Bounds on Contingent Claims Prices with Convex Constraints on the Dollar Investments of the Hedge Portfolio," Finance 9712006, University Library of Munich, Germany.
  • Handle: RePEc:wpa:wuwpfi:9712006
    Note: Type of Document - LaTeX 2e; to print on PostScript; pages: 30 ; figures: included
    as

    Download full text from publisher

    File URL: https://econwpa.ub.uni-muenchen.de/econ-wp/fin/papers/9712/9712006.ps.gz
    Download Restriction: no

    File URL: https://econwpa.ub.uni-muenchen.de/econ-wp/fin/papers/9712/9712006.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Harrison, J. Michael & Pliska, Stanley R., 1983. "A stochastic calculus model of continuous trading: Complete markets," Stochastic Processes and their Applications, Elsevier, vol. 15(3), pages 313-316, August.
    2. Alain Bensoussan & Robert J. Elliott, 1995. "Attainable Claims In A Markov Market1," Mathematical Finance, Wiley Blackwell, vol. 5(2), pages 121-131, April.
    3. Hindy, Ayman & Huang, Chi-fu & Zhu, Steven H., 1997. "Numerical analysis of a free-boundary singular control problem in financial economics," Journal of Economic Dynamics and Control, Elsevier, vol. 21(2-3), pages 297-327.
    4. Rust, John, 1996. "Numerical dynamic programming in economics," Handbook of Computational Economics, in: H. M. Amman & D. A. Kendrick & J. Rust (ed.), Handbook of Computational Economics, edition 1, volume 1, chapter 14, pages 619-729, Elsevier.
    5. Harrison, J. Michael & Kreps, David M., 1979. "Martingales and arbitrage in multiperiod securities markets," Journal of Economic Theory, Elsevier, vol. 20(3), pages 381-408, June.
    6. Black, Fischer & Scholes, Myron S, 1973. "The Pricing of Options and Corporate Liabilities," Journal of Political Economy, University of Chicago Press, vol. 81(3), pages 637-654, May-June.
    7. Claus Munk, 1997. "Optimal Consumption/Investment Policies with Undiversifiable Income Risk and Borrowing Constraints," Finance 9712003, University Library of Munich, Germany.
    8. Cuoco, Domenico, 1997. "Optimal Consumption and Equilibrium Prices with Portfolio Constraints and Stochastic Income," Journal of Economic Theory, Elsevier, vol. 72(1), pages 33-73, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. repec:dau:papers:123456789/5374 is not listed on IDEAS
    2. Suresh M. Sundaresan, 2000. "Continuous‐Time Methods in Finance: A Review and an Assessment," Journal of Finance, American Finance Association, vol. 55(4), pages 1569-1622, August.
    3. Jouini, Elyes, 2001. "Arbitrage and control problems in finance: A presentation," Journal of Mathematical Economics, Elsevier, vol. 35(2), pages 167-183, April.
    4. repec:dau:papers:123456789/5590 is not listed on IDEAS
    5. Timothy Johnson, 2015. "Reciprocity as a Foundation of Financial Economics," Journal of Business Ethics, Springer, vol. 131(1), pages 43-67, September.
    6. Hosam Ki & Byungwook Choi & Kook‐Hyun Chang & Miyoung Lee, 2005. "Option pricing under extended normal distribution," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 25(9), pages 845-871, September.
    7. Duffie, Darrell, 2003. "Intertemporal asset pricing theory," Handbook of the Economics of Finance, in: G.M. Constantinides & M. Harris & R. M. Stulz (ed.), Handbook of the Economics of Finance, edition 1, volume 1, chapter 11, pages 639-742, Elsevier.
    8. Elyès Jouini & Clotilde Napp, 2002. "Arbitrage Pricing And Equilibrium Pricing: Compatibility Conditions," World Scientific Book Chapters, in: Marco Avellaneda (ed.), Quantitative Analysis In Financial Markets Collected Papers of the New York University Mathematical Finance Seminar(Volume III), chapter 6, pages 131-158, World Scientific Publishing Co. Pte. Ltd..
    9. Jos'e Manuel Corcuera, 2021. "The Golden Age of the Mathematical Finance," Papers 2102.06693, arXiv.org, revised Mar 2021.
    10. Erik Schlögl, 2002. "A multicurrency extension of the lognormal interest rate Market Models," Finance and Stochastics, Springer, vol. 6(2), pages 173-196.
    11. Wayne King Ming Chan, 2015. "RAROC-Based Contingent Claim Valuation," PhD Thesis, Finance Discipline Group, UTS Business School, University of Technology, Sydney, number 3-2015, January-A.
    12. Wayne King Ming Chan, 2015. "RAROC-Based Contingent Claim Valuation," PhD Thesis, Finance Discipline Group, UTS Business School, University of Technology, Sydney, number 21, July-Dece.
    13. Lau, John W. & Siu, Tak Kuen, 2008. "On option pricing under a completely random measure via a generalized Esscher transform," Insurance: Mathematics and Economics, Elsevier, vol. 43(1), pages 99-107, August.
    14. Siu, Tak Kuen, 2008. "A game theoretic approach to option valuation under Markovian regime-switching models," Insurance: Mathematics and Economics, Elsevier, vol. 42(3), pages 1146-1158, June.
    15. Alev Meral, 2019. "Comparison of various risk measures for an optimal portfolio," Papers 1912.09573, arXiv.org.
    16. Robert Brooks & Joshua A. Brooks, 2017. "An Option Valuation Framework Based On Arithmetic Brownian Motion: Justification And Implementation Issues," Journal of Financial Research, Southern Finance Association;Southwestern Finance Association, vol. 40(3), pages 401-427, September.
    17. Elyès Jouini & Hédi Kallal, 1999. "Viability and Equilibrium in Securities Markets with Frictions," Mathematical Finance, Wiley Blackwell, vol. 9(3), pages 275-292, July.
    18. Schlögl, Erik, 2013. "Option pricing where the underlying assets follow a Gram/Charlier density of arbitrary order," Journal of Economic Dynamics and Control, Elsevier, vol. 37(3), pages 611-632.
    19. Yang Chang, 2014. "A Consistent Approach to Modelling the Interest Rate Market Anomalies Post the Global Financial Crisis," PhD Thesis, Finance Discipline Group, UTS Business School, University of Technology, Sydney, number 18, July-Dece.
    20. Shen, Yang & Siu, Tak Kuen, 2013. "Stochastic differential game, Esscher transform and general equilibrium under a Markovian regime-switching Lévy model," Insurance: Mathematics and Economics, Elsevier, vol. 53(3), pages 757-768.
    21. Munk, Claus, 2015. "Financial Asset Pricing Theory," OUP Catalogue, Oxford University Press, number 9780198716457.
    22. Gerber, Hans U. & Shiu, Elias S. W., 1996. "Actuarial bridges to dynamic hedging and option pricing," Insurance: Mathematics and Economics, Elsevier, vol. 18(3), pages 183-218, November.

    More about this item

    Keywords

    Contingent claims pricing; constrained dollar investments; no- arbitrage bounds; numerical solution;
    All these keywords.

    JEL classification:

    • C61 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Optimization Techniques; Programming Models; Dynamic Analysis
    • G13 - Financial Economics - - General Financial Markets - - - Contingent Pricing; Futures Pricing

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wpa:wuwpfi:9712006. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: EconWPA (email available below). General contact details of provider: https://econwpa.ub.uni-muenchen.de .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.