IDEAS home Printed from https://ideas.repec.org/p/wpa/wuwpfi/0509024.html
   My bibliography  Save this paper

Time-varying Beta Risk of Pan-European Sectors: A Comparison of Alternative Modeling Techniques

Author

Listed:
  • Sascha Mergner

    (AMB Generali Asset Managers)

Abstract

This paper investigates the time-varying behavior of systematic risk for eighteen pan-European industry portfolios. Using weekly data over the period 1987-2005, three different modeling techniques in addition to the standard constant coefficient model are employed: a bivariate t- GARCH(1,1) model, two Kalman filter based approaches as well as a bivariate stochastic volatility model estimated via the efficient Monte Carlo likelihood technique. A comparison of the different models' ex- ante forecast performances indicates that the random-walk process in connection with the Kalman filter is the preferred model to describe and forecast the time-varying behavior of sector betas in a European context.

Suggested Citation

  • Sascha Mergner, 2005. "Time-varying Beta Risk of Pan-European Sectors: A Comparison of Alternative Modeling Techniques," Finance 0509024, University Library of Munich, Germany.
  • Handle: RePEc:wpa:wuwpfi:0509024
    Note: Type of Document - pdf; pages: 38. 38 pages, pdf-file
    as

    Download full text from publisher

    File URL: https://econwpa.ub.uni-muenchen.de/econ-wp/fin/papers/0509/0509024.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Engle, Robert F. & Kroner, Kenneth F., 1995. "Multivariate Simultaneous Generalized ARCH," Econometric Theory, Cambridge University Press, vol. 11(1), pages 122-150, February.
    2. Danielsson, Jon, 1994. "Stochastic volatility in asset prices estimation with simulated maximum likelihood," Journal of Econometrics, Elsevier, vol. 64(1-2), pages 375-400.
    3. Fabozzi, Frank J. & Francis, Jack Clark, 1978. "Beta as a Random Coefficient," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 13(1), pages 101-116, March.
    4. Torben G. Andersen & Tim Bollerslev & Francis X. Diebold & Jin Wu, 2005. "A Framework for Exploring the Macroeconomic Determinants of Systematic Risk," American Economic Review, American Economic Association, vol. 95(2), pages 398-404, May.
    5. repec:cup:etheor:v:11:y:1995:i:1:p:122-50 is not listed on IDEAS
    6. Bollerslev, Tim, 1986. "Generalized autoregressive conditional heteroskedasticity," Journal of Econometrics, Elsevier, vol. 31(3), pages 307-327, April.
    7. Bollerslev, Tim & Engle, Robert F & Wooldridge, Jeffrey M, 1988. "A Capital Asset Pricing Model with Time-Varying Covariances," Journal of Political Economy, University of Chicago Press, vol. 96(1), pages 116-131, February.
    8. Braun, Phillip A & Nelson, Daniel B & Sunier, Alain M, 1995. "Good News, Bad News, Volatility, and Betas," Journal of Finance, American Finance Association, vol. 50(5), pages 1575-1603, December.
    9. Collins, Daniel W & Ledolter, Johannes & Rayburn, Judy Dawson, 1987. "Some Further Evidence on the Stochastic Properties of Systematic Risk," The Journal of Business, University of Chicago Press, vol. 60(3), pages 425-448, July.
    10. Robert W. Faff & David Hillier & Joseph Hillier, 2000. "Time Varying Beta Risk: An Analysis of Alternative Modelling Techniques," Journal of Business Finance & Accounting, Wiley Blackwell, vol. 27(5‐6), pages 523-554, June.
    11. Bollerslev, Tim & Chou, Ray Y. & Kroner, Kenneth F., 1992. "ARCH modeling in finance : A review of the theory and empirical evidence," Journal of Econometrics, Elsevier, vol. 52(1-2), pages 5-59.
    12. Bollerslev, Tim, 1987. "A Conditionally Heteroskedastic Time Series Model for Speculative Prices and Rates of Return," The Review of Economics and Statistics, MIT Press, vol. 69(3), pages 542-547, August.
    13. Bollerslev, Tim, 1990. "Modelling the Coherence in Short-run Nominal Exchange Rates: A Multivariate Generalized ARCH Model," The Review of Economics and Statistics, MIT Press, vol. 72(3), pages 498-505, August.
    14. Bos, T & Newbold, P, 1984. "An Empirical Investigation of the Possibility of Stochastic Systematic Risk in the Market Model," The Journal of Business, University of Chicago Press, vol. 57(1), pages 35-41, January.
    15. Robert W. Faff & David Hillier & Joseph Hillier, 2000. "Time Varying Beta Risk: An Analysis of Alternative Modelling Techniques," Journal of Business Finance & Accounting, Wiley Blackwell, vol. 27(5‐6), pages 523-554, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. He, Zhongzhi (Lawrence) & Kryzanowski, Lawrence, 2008. "Dynamic betas for Canadian sector portfolios," International Review of Financial Analysis, Elsevier, vol. 17(5), pages 1110-1122, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sascha Mergner & Jan Bulla, 2008. "Time-varying beta risk of Pan-European industry portfolios: A comparison of alternative modeling techniques," The European Journal of Finance, Taylor & Francis Journals, vol. 14(8), pages 771-802.
    2. Ortas, E. & Salvador, M. & Moneva, J.M., 2015. "Improved beta modeling and forecasting: An unobserved component approach with conditional heteroscedastic disturbances," The North American Journal of Economics and Finance, Elsevier, vol. 31(C), pages 27-51.
    3. Hisham Al Refai & Gazi Mainul Hassan, 2018. "The Impact of Market-wide Volatility on Time-varying Risk: Evidence from Qatar Stock Exchange," Journal of Emerging Market Finance, Institute for Financial Management and Research, vol. 17(2_suppl), pages 239-258, August.
    4. Асатуров К.Г., 2015. "Динамические Модели Систематического Риска: Сравнение На Примере Индийского Фондового Рынка," Журнал Экономика и математические методы (ЭММ), Центральный Экономико-Математический Институт (ЦЭМИ), vol. 51(4), pages 59-75, октябрь.
    5. Torben G. Andersen & Tim Bollerslev & Peter F. Christoffersen & Francis X. Diebold, 2005. "Volatility Forecasting," PIER Working Paper Archive 05-011, Penn Institute for Economic Research, Department of Economics, University of Pennsylvania.
    6. Andersen, Torben G. & Bollerslev, Tim & Christoffersen, Peter F. & Diebold, Francis X., 2006. "Volatility and Correlation Forecasting," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 1, chapter 15, pages 777-878, Elsevier.
    7. Marshall, Andrew & Maulana, Tubagus & Tang, Leilei, 2009. "The estimation and determinants of emerging market country risk and the dynamic conditional correlation GARCH model," International Review of Financial Analysis, Elsevier, vol. 18(5), pages 250-259, December.
    8. Carl Chiarella & Roberto Dieci & Xue-Zhong He, 2013. "Time-varying beta: a boundedly rational equilibrium approach," Journal of Evolutionary Economics, Springer, vol. 23(3), pages 609-639, July.
    9. Franses,Philip Hans & Dijk,Dick van, 2000. "Non-Linear Time Series Models in Empirical Finance," Cambridge Books, Cambridge University Press, number 9780521779654, September.
    10. Degiannakis, Stavros & Xekalaki, Evdokia, 2004. "Autoregressive Conditional Heteroskedasticity (ARCH) Models: A Review," MPRA Paper 80487, University Library of Munich, Germany.
    11. BAUWENS, Luc & HAFNER, Christian & LAURENT, Sébastien, 2011. "Volatility models," LIDAM Discussion Papers CORE 2011058, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
      • Bauwens, L. & Hafner, C. & Laurent, S., 2012. "Volatility Models," LIDAM Reprints ISBA 2012028, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
      • Bauwens, L. & Hafner C. & Laurent, S., 2011. "Volatility Models," LIDAM Discussion Papers ISBA 2011044, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    12. Maik Eisenbeiss & Goran Kauermann & Willi Semmler, 2007. "Estimating Beta-Coefficients of German Stock Data: A Non-Parametric Approach," The European Journal of Finance, Taylor & Francis Journals, vol. 13(6), pages 503-522.
    13. Zhou, Jian, 2013. "Conditional market beta for REITs: A comparison of modeling techniques," Economic Modelling, Elsevier, vol. 30(C), pages 196-204.
    14. Härdle, Wolfgang Karl & Hautsch, Nikolaus & Pigorsch, Uta, 2008. "Measuring and modeling risk using high-frequency data," SFB 649 Discussion Papers 2008-045, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
    15. Lütkepohl,Helmut & Krätzig,Markus (ed.), 2004. "Applied Time Series Econometrics," Cambridge Books, Cambridge University Press, number 9780521547871, January.
    16. Nelson, Daniel B., 1996. "Asymptotic filtering theory for multivariate ARCH models," Journal of Econometrics, Elsevier, vol. 71(1-2), pages 1-47.
    17. Wang, Lu, 2021. "Time-varying conditional beta, return spillovers, and dynamic bank diversification strategies," The Quarterly Review of Economics and Finance, Elsevier, vol. 79(C), pages 272-280.
    18. Tim Bollerslev, 2008. "Glossary to ARCH (GARCH)," CREATES Research Papers 2008-49, Department of Economics and Business Economics, Aarhus University.
    19. Robert D. Brooks & Robert W. Faff & Michael D. McKenzie, 1998. "Time†Varying Beta Risk of Australian Industry Portfolios: A Comparison of Modelling Techniques," Australian Journal of Management, Australian School of Business, vol. 23(1), pages 1-22, June.
    20. Faff, Robert W. & Hodgson, Allan & Saudagaran, Shahrokh, 2002. "International cross-listings towards more liquid markets: the impact on domestic firms," Journal of Multinational Financial Management, Elsevier, vol. 12(4-5), pages 365-390.

    More about this item

    Keywords

    Time-varying beta risk; Kalman filter; bivariate t-GARCH; stochastic volatility; efficient Monte Carlo likelihood; European industry portfolios;
    All these keywords.

    JEL classification:

    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
    • C32 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models
    • G10 - Financial Economics - - General Financial Markets - - - General (includes Measurement and Data)
    • G12 - Financial Economics - - General Financial Markets - - - Asset Pricing; Trading Volume; Bond Interest Rates
    • G15 - Financial Economics - - General Financial Markets - - - International Financial Markets

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wpa:wuwpfi:0509024. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: EconWPA (email available below). General contact details of provider: https://econwpa.ub.uni-muenchen.de .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.