IDEAS home Printed from https://ideas.repec.org/p/wpa/wuwpfi/0505013.html
   My bibliography  Save this paper

Corporate Credit Risk Modeling: Quantitative Rating System And Probability Of Default Estimation

Author

Listed:
  • João Fernandes

    (Banco BPI)

Abstract

The literature on corporate credit risk modeling for privately-held firms is scarce. Although firms with unlisted equity or debt represent a significant fraction of the corporate sector worldwide, research in this area has been hampered by the unavailability of public data. This study is an empirical application of credit scoring and rating techniques applied to the corporate historical database of one of the major Portuguese banks. Several alternative scoring methodologies are presented, thoroughly validated and statistically compared. In addition, two distinct strategies for grouping the individual scores into rating classes are developed. Finally, the regulatory capital requirements under the New Basel Capital Accord are calculated for a simulated portfolio, and compared to the capital requirements under the current capital accord.

Suggested Citation

  • João Fernandes, 2005. "Corporate Credit Risk Modeling: Quantitative Rating System And Probability Of Default Estimation," Finance 0505013, University Library of Munich, Germany.
  • Handle: RePEc:wpa:wuwpfi:0505013
    Note: Type of Document - pdf; pages: 70
    as

    Download full text from publisher

    File URL: https://econwpa.ub.uni-muenchen.de/econ-wp/fin/papers/0505/0505013.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Crouhy, Michel & Galai, Dan & Mark, Robert, 2001. "Prototype risk rating system," Journal of Banking & Finance, Elsevier, vol. 25(1), pages 47-95, January.
    2. Jacobson, Tor & Roszbach, Kasper, 2003. "Bank lending policy, credit scoring and value-at-risk," Journal of Banking & Finance, Elsevier, vol. 27(4), pages 615-633, April.
    3. Black, Fischer & Cox, John C, 1976. "Valuing Corporate Securities: Some Effects of Bond Indenture Provisions," Journal of Finance, American Finance Association, vol. 31(2), pages 351-367, May.
    4. Altman, Edward I. & Marco, Giancarlo & Varetto, Franco, 1994. "Corporate distress diagnosis: Comparisons using linear discriminant analysis and neural networks (the Italian experience)," Journal of Banking & Finance, Elsevier, vol. 18(3), pages 505-529, May.
    5. Duffie, Darrell & Singleton, Kenneth J, 1997. "An Econometric Model of the Term Structure of Interest-Rate Swap Yields," Journal of Finance, American Finance Association, vol. 52(4), pages 1287-1321, September.
    6. Robert A. Jarrow & Stuart M. Turnbull, 2008. "Pricing Derivatives on Financial Securities Subject to Credit Risk," World Scientific Book Chapters, in: Financial Derivatives Pricing Selected Works of Robert Jarrow, chapter 17, pages 377-409, World Scientific Publishing Co. Pte. Ltd..
    7. Edward I. Altman, 1968. "Financial Ratios, Discriminant Analysis And The Prediction Of Corporate Bankruptcy," Journal of Finance, American Finance Association, vol. 23(4), pages 589-609, September.
    8. Merton, Robert C, 1974. "On the Pricing of Corporate Debt: The Risk Structure of Interest Rates," Journal of Finance, American Finance Association, vol. 29(2), pages 449-470, May.
    9. Glenn Milligan & Martha Cooper, 1985. "An examination of procedures for determining the number of clusters in a data set," Psychometrika, Springer;The Psychometric Society, vol. 50(2), pages 159-179, June.
    10. Edward I. Altman, 1968. "The Prediction Of Corporate Bankruptcy: A Discriminant Analysis," Journal of Finance, American Finance Association, vol. 23(1), pages 193-194, March.
    11. Ohlson, Ja, 1980. "Financial Ratios And The Probabilistic Prediction Of Bankruptcy," Journal of Accounting Research, Wiley Blackwell, vol. 18(1), pages 109-131.
    12. Engelmann, Bernd & Hayden, Evelyn & Tasche, Dirk, 2003. "Measuring the Discriminative Power of Rating Systems," Discussion Paper Series 2: Banking and Financial Studies 2003,01, Deutsche Bundesbank.
    13. Barniv, Ran & McDonald, James B, 1999. "Review of Categorical Models for Classification Issues in Accounting and Finance," Review of Quantitative Finance and Accounting, Springer, vol. 13(1), pages 39-62, July.
    14. Black, Fischer & Scholes, Myron S, 1973. "The Pricing of Options and Corporate Liabilities," Journal of Political Economy, University of Chicago Press, vol. 81(3), pages 637-654, May-June.
    15. Patrick Royston & Douglas G. Altman, 1994. "Regression Using Fractional Polynomials of Continuous Covariates: Parsimonious Parametric Modelling," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 43(3), pages 429-453, September.
    16. Boyes, William J. & Hoffman, Dennis L. & Low, Stuart A., 1989. "An econometric analysis of the bank credit scoring problem," Journal of Econometrics, Elsevier, vol. 40(1), pages 3-14, January.
    17. Crook, Jonathan & Banasik, John, 2004. "Does reject inference really improve the performance of application scoring models?," Journal of Banking & Finance, Elsevier, vol. 28(4), pages 857-874, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Moro Russ A. & Härdle Wolfgang K. & Schäfer Dorothea, 2017. "Company rating with support vector machines," Statistics & Risk Modeling, De Gruyter, vol. 34(1-2), pages 55-67, June.
    2. Marinela BARBULESCU & Alina HAGIU, 2019. "Typology Of Credit Risk In Economy," Scientific Bulletin - Economic Sciences, University of Pitesti, vol. 18(3), pages 101-106.
    3. Jakubik, Petr & Moinescu, Bogdan, 2015. "Assessing optimal credit growth for an emerging banking system," Economic Systems, Elsevier, vol. 39(4), pages 577-591.
    4. Alexey Litvinenko, 2023. "A Comparative Analysis of Altman's Z-Score and T. Jury's Cash-Based Credit Risk Models with The Application to The Production Company and The Data for The Years 2016-2022," Journal of Accounting and Management Information Systems, Faculty of Accounting and Management Information Systems, The Bucharest University of Economic Studies, vol. 22(3), pages 518-553, September.
    5. Mariusz Górajski & Dobromił Serwa & Zuzanna Wośko, 2019. "Measuring expected time to default under stress conditions for corporate loans," Empirical Economics, Springer, vol. 57(1), pages 31-52, July.
    6. Van Laere, Elisabeth & Baesens, Bart, 2010. "The development of a simple and intuitive rating system under Solvency II," Insurance: Mathematics and Economics, Elsevier, vol. 46(3), pages 500-510, June.
    7. Marinela BARBULESCU & Alina HAGIU, 2020. "Financial Markets And Hedging Approaches," Scientific Bulletin - Economic Sciences, University of Pitesti, vol. 19(1), pages 30-37.
    8. Dagmar Čámská, 2016. "Development tendencies of prediction models with an emphasis on Central Europe," Ekonomika a Management, Prague University of Economics and Business, vol. 2016(4).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhou Lu & Zhuyao Zhuo, 2021. "Modelling of Chinese corporate bond default – A machine learning approach," Accounting and Finance, Accounting and Finance Association of Australia and New Zealand, vol. 61(5), pages 6147-6191, December.
    2. Giesecke, Kay & Longstaff, Francis A. & Schaefer, Stephen & Strebulaev, Ilya, 2011. "Corporate bond default risk: A 150-year perspective," Journal of Financial Economics, Elsevier, vol. 102(2), pages 233-250.
    3. Catherine Refait, 2000. "Estimation du risque de défaut par une modélisation stochastique du bilan : Application à des firmes industrielles françaises," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) halshs-03718527, HAL.
    4. Augustin, Patrick & Subrahmanyam, Marti G. & Tang, Dragon Yongjun & Wang, Sarah Qian, 2014. "Credit Default Swaps: A Survey," Foundations and Trends(R) in Finance, now publishers, vol. 9(1-2), pages 1-196, December.
    5. Ming Fang & Rui Zhong, 2004. "Default Risk, Firm's Characteristics, and Risk Shifting," Yale School of Management Working Papers amz2461, Yale School of Management, revised 01 Mar 2005.
    6. Kay Giesecke & Francis A. Longstaff & Stephen Schaefer & Ilya Strebulaev, 2010. "Corporate Bond Default Risk: A 150-Year Perspective," NBER Working Papers 15848, National Bureau of Economic Research, Inc.
    7. Bhanu Pratap Singh & Alok Kumar Mishra, 2016. "Re-estimation and comparisons of alternative accounting based bankruptcy prediction models for Indian companies," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 2(1), pages 1-28, December.
    8. Chen, An-Sing & Chu, Hsiang-Hui & Hung, Pi-Hsia & Cheng, Miao-Sih, 2020. "Financial risk and acquirers' stockholder wealth in mergers and acquisitions," The North American Journal of Economics and Finance, Elsevier, vol. 54(C).
    9. Härdle, Wolfgang Karl & Prastyo, Dedy Dwi & Hafner, Christian, 2012. "Support vector machines with evolutionary feature selection for default prediction," SFB 649 Discussion Papers 2012-030, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
    10. Alexandros Benos & George Papanastasopoulos, 2005. "Extending the Merton Model: A Hybrid Approach to Assessing Credit Quality," Finance 0505020, University Library of Munich, Germany, revised 18 Nov 2005.
    11. Bhanu Pratap SINGH & Alok Kumar MISHRA, 2016. "Predicting probability of default of Indian companies: A market based approach," Theoretical and Applied Economics, Asociatia Generala a Economistilor din Romania - AGER, vol. 0(3(608), A), pages 197-204, Autumn.
    12. Antonio Trujillo-Ponce & Reyes Samaniego-Medina & Clara Cardone-Riportella, 2014. "Examining what best explains corporate credit risk: accounting-based versus market-based models," Journal of Business Economics and Management, Taylor & Francis Journals, vol. 15(2), pages 253-276, April.
    13. Wolter, Marcus & Rösch, Daniel, 2014. "Cure events in default prediction," European Journal of Operational Research, Elsevier, vol. 238(3), pages 846-857.
    14. repec:hum:wpaper:sfb649dp2012-030 is not listed on IDEAS
    15. Ming Fang & Rui Zhong, 2004. "Default Risk, Firm's Characteristics, and Risk Shifting," Yale School of Management Working Papers amz2461, Yale School of Management, revised 01 Mar 2005.
    16. Bhanu Pratap SINGH & Alok Kumar MISHRA, 2016. "Predicting probability of default of Indian companies: A market based approach," Theoretical and Applied Economics, Asociatia Generala a Economistilor din Romania / Editura Economica, vol. 0(3(608), A), pages 197-204, Autumn.
    17. Tsung-Kang Chen & Hsien-Hsing Liao & Chia-Wu Lu, 2011. "A flow-based corporate credit model," Review of Quantitative Finance and Accounting, Springer, vol. 36(4), pages 517-532, May.
    18. En-Der Su & Shih-Ming Huang, 2010. "Comparing Firm Failure Predictions Between Logit, KMV, and ZPP Models: Evidence from Taiwan’s Electronics Industry," Asia-Pacific Financial Markets, Springer;Japanese Association of Financial Economics and Engineering, vol. 17(3), pages 209-239, September.
    19. Charitou, Andreas & Dionysiou, Dionysia & Lambertides, Neophytos & Trigeorgis, Lenos, 2013. "Alternative bankruptcy prediction models using option-pricing theory," Journal of Banking & Finance, Elsevier, vol. 37(7), pages 2329-2341.
    20. International Association of Deposit Insurers, 2011. "Evaluation of Deposit Insurance Fund Sufficiency on the Basis of Risk Analysis," IADI Research Papers 11-11, International Association of Deposit Insurers.
    21. Bellalah, Mondher & Zouari, Sami & Levyne, Olivier, 2016. "The performance of hybrid models in the assessment of default risk," Economic Modelling, Elsevier, vol. 52(PA), pages 259-265.

    More about this item

    Keywords

    Credit Scoring; Credit Rating; Private Firms; Discriminatory Power; Basel Capital Accord; Capital Requirements;
    All these keywords.

    JEL classification:

    • C13 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Estimation: General
    • C14 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Semiparametric and Nonparametric Methods: General
    • G21 - Financial Economics - - Financial Institutions and Services - - - Banks; Other Depository Institutions; Micro Finance Institutions; Mortgages
    • G28 - Financial Economics - - Financial Institutions and Services - - - Government Policy and Regulation

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wpa:wuwpfi:0505013. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: EconWPA (email available below). General contact details of provider: https://econwpa.ub.uni-muenchen.de .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.