IDEAS home Printed from https://ideas.repec.org/p/wpa/wuwpem/0108001.html
   My bibliography  Save this paper

Exogenous impact and conditional quantile functions

Author

Listed:
  • Andrew Chesher

    (University College London)

Abstract

An exogenous impact function is defined as the derivative of a structural function with respect to an endogenous variable, other variables, including unobservable variables held fixed. Unobservable variables are fixed at specific quantiles of their marginal distributions. Exogenous impact functions reveal the impact of an exogenous shift in a variable perhaps determined endogenously in the data generating process. They provide information about the variation in exogenous impacts across quantiles of the distributions of the unobservable variables that appear in the structural model. This paper considers nonparametric identification of exogenous impact functions under quantile independence conditions. It is shown that, when valid instrumental variables are present, exogenous impact functions can be identified as functionals of conditional quantile functions that involve only observable random variables. This suggests parametric, semiparametric and nonparametric strategies for estimating exogenous impact functions.

Suggested Citation

  • Andrew Chesher, 2001. "Exogenous impact and conditional quantile functions," Econometrics 0108001, University Library of Munich, Germany.
  • Handle: RePEc:wpa:wuwpem:0108001
    Note: Type of Document - Acrobat PDF; prepared on Windows 2000 Professional PC; to print on A4 paper; pages: 13 ; figures: none
    as

    Download full text from publisher

    File URL: https://econwpa.ub.uni-muenchen.de/econ-wp/em/papers/0108/0108001.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Amemiya, Takeshi, 1982. "Two Stage Least Absolute Deviations Estimators," Econometrica, Econometric Society, vol. 50(3), pages 689-711, May.
    2. Newey, Whitney K. & Powell, James L., 1990. "Efficient Estimation of Linear and Type I Censored Regression Models Under Conditional Quantile Restrictions," Econometric Theory, Cambridge University Press, vol. 6(3), pages 295-317, September.
    3. Alberto Abadie & Joshua Angrist & Guido Imbens, 2002. "Instrumental Variables Estimates of the Effect of Subsidized Training on the Quantiles of Trainee Earnings," Econometrica, Econometric Society, vol. 70(1), pages 91-117, January.
    4. James J. Heckman & Jeffrey Smith & Nancy Clements, 1997. "Making The Most Out Of Programme Evaluations and Social Experiments: Accounting For Heterogeneity in Programme Impacts," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 64(4), pages 487-535.
    5. Jesse Levin, 2001. "For whom the reductions count: A quantile regression analysis of class size and peer effects on scholastic achievement," Empirical Economics, Springer, vol. 26(1), pages 221-246.
    6. Koenker, Roger W & Bassett, Gilbert, Jr, 1978. "Regression Quantiles," Econometrica, Econometric Society, vol. 46(1), pages 33-50, January.
    7. Khan, Shakeeb, 2001. "Two-stage rank estimation of quantile index models," Journal of Econometrics, Elsevier, vol. 100(2), pages 319-355, February.
    8. Powell, James L, 1983. "The Asymptotic Normality of Two-Stage Least Absolute Deviations Estimators," Econometrica, Econometric Society, vol. 51(5), pages 1569-1575, September.
    9. repec:cup:etheor:v:6:y:1990:i:3:p:295-317 is not listed on IDEAS
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ma, Lingjie & Koenker, Roger, 2006. "Quantile regression methods for recursive structural equation models," Journal of Econometrics, Elsevier, vol. 134(2), pages 471-506, October.
    2. Chesher, Andrew, 2007. "Instrumental values," Journal of Econometrics, Elsevier, vol. 139(1), pages 15-34, July.
    3. Brunello, Giorgio & Fabbri, Daniele & Fort, Margherita, 2009. "Years of Schooling, Human Capital and the Body Mass Index of European Females," IZA Discussion Papers 4667, Institute of Labor Economics (IZA).
    4. Giorgio Brunello & Margherita Fort & Guglielmo Weber, 2009. "Changes in Compulsory Schooling, Education and the Distribution of Wages in Europe," Economic Journal, Royal Economic Society, vol. 119(536), pages 516-539, March.
    5. Brunello, Giorgio & Fort, Margherita & Weber, Guglielmo, 2007. "“For One More Year with You”: Changes in Compulsory Schooling, Education and the Distribution of Wages in Europe," IZA Discussion Papers 3102, Institute of Labor Economics (IZA).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chesher, Andrew, 2007. "Instrumental values," Journal of Econometrics, Elsevier, vol. 139(1), pages 15-34, July.
    2. Ma, Lingjie & Koenker, Roger, 2006. "Quantile regression methods for recursive structural equation models," Journal of Econometrics, Elsevier, vol. 134(2), pages 471-506, October.
    3. Liu, Sezhu & Hite, Diane, 2013. "Measuring the Effect of Green Space on Property Value: An Application of the Hedonic Spatial Quantile Regression," 2013 Annual Meeting, February 2-5, 2013, Orlando, Florida 143045, Southern Agricultural Economics Association.
    4. Muller, Christophe, 2018. "Heterogeneity and nonconstant effect in two-stage quantile regression," Econometrics and Statistics, Elsevier, vol. 8(C), pages 3-12.
    5. Christophe Muller, 2019. "Linear Quantile Regression and Endogeneity Correction," Biostatistics and Biometrics Open Access Journal, Juniper Publishers Inc., vol. 9(5), pages 123-128, August.
    6. Sergio Firpo, 2007. "Efficient Semiparametric Estimation of Quantile Treatment Effects," Econometrica, Econometric Society, vol. 75(1), pages 259-276, January.
    7. Balestra, Simone & Backes-Gellner, Uschi, 2017. "Heterogeneous returns to education over the wage distribution: Who profits the most?," Labour Economics, Elsevier, vol. 44(C), pages 89-105.
    8. Tae-Hwan Kim & Christophe Muller, 2020. "Inconsistency transmission and variance reduction in two-stage quantile regression," Post-Print hal-02084505, HAL.
    9. Victor Chernozhukov & Christian Hansen & Kaspar Wuthrich, 2020. "Instrumental Variable Quantile Regression," Papers 2009.00436, arXiv.org.
    10. Lee, Sokbae, 2007. "Endogeneity in quantile regression models: A control function approach," Journal of Econometrics, Elsevier, vol. 141(2), pages 1131-1158, December.
    11. Zhenlin Yang & Liangjun Su, 2007. "Instrumental Variable Quantile Estimation of Spatial Autoregressive Models," Working Papers 05-2007, Singapore Management University, School of Economics.
    12. Gilles Dufrenot & Valerie Mignon & Charalambos Tsangarides, 2010. "The trade-growth nexus in the developing countries: a quantile regression approach," Review of World Economics (Weltwirtschaftliches Archiv), Springer;Institut für Weltwirtschaft (Kiel Institute for the World Economy), vol. 146(4), pages 731-761, December.
    13. Shengfang Tang & Zongwu Cai & Ying Fang & Ming Lin, 2020. "A New Quantile Treatment Effect Model for Studying Smoking Effect on Birth Weight During Mother's Pregnancy," WORKING PAPERS SERIES IN THEORETICAL AND APPLIED ECONOMICS 202003, University of Kansas, Department of Economics, revised Feb 2020.
    14. Kan, Kamhon & Tsai, Wei-Der, 2004. "Obesity and risk knowledge," Journal of Health Economics, Elsevier, vol. 23(5), pages 907-934, September.
    15. Victor Chernozhukov & Iván Fernández‐Val & Blaise Melly, 2013. "Inference on Counterfactual Distributions," Econometrica, Econometric Society, vol. 81(6), pages 2205-2268, November.
    16. Kaplan, David M. & Sun, Yixiao, 2017. "Smoothed Estimating Equations For Instrumental Variables Quantile Regression," Econometric Theory, Cambridge University Press, vol. 33(1), pages 105-157, February.
    17. Baer, Werner & Galvão Jr., Antonio Fialho, 2008. "Tax burden, government expenditures and income distribution in Brazil," The Quarterly Review of Economics and Finance, Elsevier, vol. 48(2), pages 345-358, May.
    18. Jamal Bouoiyour & Amal Miftah & Refk Selmi, 2019. "The economic contribution of immigration on Europe: Fresh evidence from a “hybrid” quantile regression model," Working Papers hal-02346700, HAL.
    19. Angel López-Nicolás & Jaume García & Pedro J. Hernández, 2001. "How wide is the gap? An investigation of gender wage differences using quantile regression," Empirical Economics, Springer, vol. 26(1), pages 149-167.
    20. Wiji Arulampalam & Alison Booth & Mark Bryan, 2010. "Are there asymmetries in the effects of training on the conditional male wage distribution?," Journal of Population Economics, Springer;European Society for Population Economics, vol. 23(1), pages 251-272, January.

    More about this item

    Keywords

    endogeneity; quantile regression; identification; structural models; instrumental variables; quantile independence;
    All these keywords.

    JEL classification:

    • C10 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wpa:wuwpem:0108001. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: EconWPA (email available below). General contact details of provider: https://econwpa.ub.uni-muenchen.de .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.