IDEAS home Printed from https://ideas.repec.org/p/wfo/rbrief/y2022i17.html
   My bibliography  Save this paper

Frühzeitiges Monitoring der Ziele für eine nachhaltige und inklusive Entwicklung in Österreich. Bewertung der Entwicklung von SDG 8 auf Basis der WIFO-Konjunkturprognose und Nowcasts

Author

Listed:
  • Sandra Bilek-Steindl
  • Thomas Url

    (WIFO)

Abstract

Die Agenda 2030 der Vereinten Nationen strebt mit den darin formulierten 17 Zielen (Sustainable Development Goals – SDG) nach einer globalen nachhaltigen Entwicklung auf ökonomischer, sozialer sowie ökologischer Ebene. Eurostat misst und evaluiert in einem Monitoring jährlich die Zielerreichung anhand von Indikatoren. Aufbauend auf dem aktuellen Bericht von Eurostat untersucht dieser Research Brief die Entwicklung von SDG 8 für Österreich. Auf Basis der WIFO-Konjunkturprognose vom Juni 2022 und von neu entwickelten Nowcast-Modellen trifft dieser Beitrag eine erste Einschätzung der Zielerreichung für das Jahr 2022. Der überwiegende Teil der wirtschaftlichen Indikatoren in SDG 8 entwickelt sich, im Zuge der Erholung vom COVID-19-bedingten Einbruch, in Richtung Zielerreichung. Auch im Bereich des Rohstoffverbrauchs ist ein Fortschritt zu erwarten. Die geschlechtsspezifischen Unterschiede in der Nichterwerbstätigkeit durch familiäre Pflegeverpflichtungen werden sich jedoch 2022 weiter vom Ziel entfernen.

Suggested Citation

  • Sandra Bilek-Steindl & Thomas Url, 2022. "Frühzeitiges Monitoring der Ziele für eine nachhaltige und inklusive Entwicklung in Österreich. Bewertung der Entwicklung von SDG 8 auf Basis der WIFO-Konjunkturprognose und Nowcasts," WIFO Research Briefs 17, WIFO.
  • Handle: RePEc:wfo:rbrief:y:2022:i:17
    Note: With English abstract.
    as

    Download full text from publisher

    File URL: https://www.wifo.ac.at/wwa/pubid/69715
    File Function: abstract
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Doz, Catherine & Giannone, Domenico & Reichlin, Lucrezia, 2011. "A two-step estimator for large approximate dynamic factor models based on Kalman filtering," Journal of Econometrics, Elsevier, vol. 164(1), pages 188-205, September.
    2. Sandra Bilek-Steindl & Thomas Url, 2022. "Nowcasting and monitoring SDG 8," Empirica, Springer;Austrian Institute for Economic Research;Austrian Economic Association, vol. 49(2), pages 313-345, May.
    3. Jürgen Bierbaumer-Polly & Sandra Bilek-Steindl & Thomas Url, 2019. "Monitoring and Nowcasting Sustainable Development Goals. A Case Study for Austria," WIFO Studies, WIFO, number 66635.
    4. repec:hal:journl:peer-00844811 is not listed on IDEAS
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sandra Bilek-Steindl & Thomas Url, 2023. "Frühzeitiges Monitoring der Ziele für eine nachhaltige und inklusive Entwicklung in Österreich – Aktualisierung 2023. Bewertung der Entwicklung von SDG 8 auf Basis der WIFO-Konjunkturprognose und Nowc," WIFO Research Briefs 11, WIFO.
    2. Sandra Bilek-Steindl & Thomas Url, 2022. "Nowcasting and monitoring SDG 8," Empirica, Springer;Austrian Institute for Economic Research;Austrian Economic Association, vol. 49(2), pages 313-345, May.
    3. Catherine Doz & Domenico Giannone & Lucrezia Reichlin, 2012. "A Quasi–Maximum Likelihood Approach for Large, Approximate Dynamic Factor Models," The Review of Economics and Statistics, MIT Press, vol. 94(4), pages 1014-1024, November.
    4. Tobias Adrian & Federico Grinberg & Nellie Liang & Sheheryar Malik & Jie Yu, 2022. "The Term Structure of Growth-at-Risk," American Economic Journal: Macroeconomics, American Economic Association, vol. 14(3), pages 283-323, July.
    5. Proietti, Tommaso, 2008. "Estimation of Common Factors under Cross-Sectional and Temporal Aggregation Constraints: Nowcasting Monthly GDP and its Main Components," MPRA Paper 6860, University Library of Munich, Germany.
    6. Matteo Barigozzi & Marc Hallin, 2023. "Dynamic Factor Models: a Genealogy," Papers 2310.17278, arXiv.org, revised Jan 2024.
    7. Thomas Despois & Catherine Doz, 2023. "Identifying and interpreting the factors in factor models via sparsity: Different approaches," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 38(4), pages 533-555, June.
    8. Aßmann, Christian & Boysen-Hogrefe, Jens & Pape, Markus, 2012. "The directional identification problem in Bayesian factor analysis: An ex-post approach," Kiel Working Papers 1799, Kiel Institute for the World Economy (IfW Kiel).
    9. Laurent Ferrara & Anna Simoni, 2023. "When are Google Data Useful to Nowcast GDP? An Approach via Preselection and Shrinkage," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 41(4), pages 1188-1202, October.
    10. Katerina Arnostova & David Havrlant & Luboš Rùžièka & Peter Tóth, 2011. "Short-Term Forecasting of Czech Quarterly GDP Using Monthly Indicators," Czech Journal of Economics and Finance (Finance a uver), Charles University Prague, Faculty of Social Sciences, vol. 61(6), pages 566-583, December.
    11. Szafranek, Karol, 2019. "Bagged neural networks for forecasting Polish (low) inflation," International Journal of Forecasting, Elsevier, vol. 35(3), pages 1042-1059.
    12. Beetsma, Roel & Cimadomo, Jacopo & van Spronsen, Josha, 2024. "One scheme fits all: A central fiscal capacity for the EMU targeting eurozone, national and regional shocks," European Economic Review, Elsevier, vol. 165(C).
    13. Xiong, Ruoxuan & Pelger, Markus, 2023. "Large dimensional latent factor modeling with missing observations and applications to causal inference," Journal of Econometrics, Elsevier, vol. 233(1), pages 271-301.
    14. Françoise Charpin, 2011. "Réévaluation des modèles d’estimation précoce de la croissance," Post-Print hal-03461522, HAL.
    15. Baumeister, Christiane & Liu, Philip & Mumtaz, Haroon, 2013. "Changes in the effects of monetary policy on disaggregate price dynamics," Journal of Economic Dynamics and Control, Elsevier, vol. 37(3), pages 543-560.
    16. Katja Heinisch & Rolf Scheufele, 2018. "Bottom-up or direct? Forecasting German GDP in a data-rich environment," Empirical Economics, Springer, vol. 54(2), pages 705-745, March.
    17. Hindrayanto, Irma & Koopman, Siem Jan & de Winter, Jasper, 2016. "Forecasting and nowcasting economic growth in the euro area using factor models," International Journal of Forecasting, Elsevier, vol. 32(4), pages 1284-1305.
    18. Mitsuru Katagiri, 2018. "House Price Synchronization and Financial Openness: A Dynamic Factor Model Approach," IMF Working Papers 2018/209, International Monetary Fund.
    19. James Sampi, 2016. "High Dimensional Factor Models: An Empirical Bayes Approach," Working Papers 75, Peruvian Economic Association.
    20. Stavros Degiannakis, 2023. "The D-model for GDP nowcasting," Swiss Journal of Economics and Statistics, Springer;Swiss Society of Economics and Statistics, vol. 159(1), pages 1-33, December.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wfo:rbrief:y:2022:i:17. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Florian Mayr (email available below). General contact details of provider: https://edirc.repec.org/data/wifooat.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.