IDEAS home Printed from https://ideas.repec.org/p/wes/weswpa/2009-003.html
   My bibliography  Save this paper

Reproducing Business Cycle Features: How Important Is Nonlinearity Versus Multivariate Information?

Author

Listed:
  • James Morley

    (Washington University in St. Louis)

  • Jeremy Piger

    (University of Oregon)

  • Pao-Lin Tien

    (Department of Economics, Wesleyan University)

Abstract

In this paper, we consider the ability of time-series models to generate simulated data that display the same business cycle features found in U.S. real GDP. Our analysis of a range of popular time-series models allows us to investigate the extent to which multivariate information can account for the apparent univariate evidence of nonlinear dynamics in GDP. We find that certain nonlinear specifications yield an improvement over linear models in reproducing business cycle features, even when multivariate information inherent in the unemployment rate, inflation, interest rates, and the components of GDP is taken into account.

Suggested Citation

  • James Morley & Jeremy Piger & Pao-Lin Tien, 2009. "Reproducing Business Cycle Features: How Important Is Nonlinearity Versus Multivariate Information?," Wesleyan Economics Working Papers 2009-003, Wesleyan University, Department of Economics.
  • Handle: RePEc:wes:weswpa:2009-003
    as

    Download full text from publisher

    File URL: http://repec.wesleyan.edu/pdf/ptien/2009003_tien.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Blanchard, Olivier Jean & Quah, Danny, 1989. "The Dynamic Effects of Aggregate Demand and Supply Disturbances," American Economic Review, American Economic Association, vol. 79(4), pages 655-673, September.
    2. Boldin Michael D., 1996. "A Check on the Robustness of Hamilton's Markov Switching Model Approach to the Economic Analysis of the Business Cycle," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 1(1), pages 1-14, April.
    3. Chang‐Jin Kim & James Morley & Jeremy Piger, 2005. "Nonlinearity and the permanent effects of recessions," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 20(2), pages 291-309.
    4. McQueen, Grant & Thorley, Steven, 1993. "Asymmetric business cycle turning points," Journal of Monetary Economics, Elsevier, vol. 31(3), pages 341-362, June.
    5. James Morley & Jeremy Piger, 2012. "The Asymmetric Business Cycle," The Review of Economics and Statistics, MIT Press, vol. 94(1), pages 208-221, February.
    6. Hamilton, James D, 1989. "A New Approach to the Economic Analysis of Nonstationary Time Series and the Business Cycle," Econometrica, Econometric Society, vol. 57(2), pages 357-384, March.
    7. King, Robert G. & Plosser, Charles I. & Stock, James H. & Watson, Mark W., 1991. "Stochastic Trends and Economic Fluctuations," American Economic Review, American Economic Association, vol. 81(4), pages 819-840, September.
    8. Frédérick Demers & Ryan Macdonald, 2007. "The Canadian Business Cycle: A Comparison of Models," Staff Working Papers 07-38, Bank of Canada.
    9. Harding, Don & Pagan, Adrian, 2002. "Dissecting the cycle: a methodological investigation," Journal of Monetary Economics, Elsevier, vol. 49(2), pages 365-381, March.
    10. Michael P. Clements & Hans-Martin Krolzig, 2004. "Can regime-switching models reproduce the business cycle features of US aggregate consumption, investment and output?," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 9(1), pages 1-14.
    11. James Morley & Jeremy Piger, 2006. "The Importance of Nonlinearity in Reproducing Business Cycle Features," Contributions to Economic Analysis, in: Nonlinear Time Series Analysis of Business Cycles, pages 75-95, Emerald Group Publishing Limited.
    12. Margaret M. McConnell & Gabriel Perez-Quiros, 2000. "Output fluctuations in the United States: what has changed since the early 1980s?," Proceedings, Federal Reserve Bank of San Francisco, issue Mar.
    13. Hess, Gregory D & Iwata, Shigeru, 1997. "Measuring and Comparing Business-Cycle Features," Journal of Business & Economic Statistics, American Statistical Association, vol. 15(4), pages 432-444, October.
    14. Gerhard Bry & Charlotte Boschan, 1971. "Foreword to "Cyclical Analysis of Time Series: Selected Procedures and Computer Programs"," NBER Chapters, in: Cyclical Analysis of Time Series: Selected Procedures and Computer Programs, pages -1, National Bureau of Economic Research, Inc.
    15. Friedman, Milton, 1993. "The "Plucking Model" of Business Fluctuations Revisited," Economic Inquiry, Western Economic Association International, vol. 31(2), pages 171-177, April.
    16. Jean Boivin & Marc P. Giannoni, 2006. "Has Monetary Policy Become More Effective?," The Review of Economics and Statistics, MIT Press, vol. 88(3), pages 445-462, August.
    17. Beatriz C. Galvao, Ana, 2002. "Can non-linear time series models generate US business cycle asymmetric shape?," Economics Letters, Elsevier, vol. 77(2), pages 187-194, October.
    18. Gerhard Bry & Charlotte Boschan, 1971. "Cyclical Analysis of Time Series: Selected Procedures and Computer Programs," NBER Books, National Bureau of Economic Research, Inc, number bry_71-1.
    Full references (including those not matched with items on IDEAS)

    Citations

    Blog mentions

    As found by EconAcademics.org, the blog aggregator for Economics research:
    1. Reproducing business cycle features: what for?
      by Economic Logician in Economic Logic on 2009-06-29 23:22:00

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Frédérique BEC & Othman BOUABDALLAH & Laurent FERRARA, 2011. "The Possible Shapes of Recoveries in Markov-Switching Models," Working Papers 2011-02, Center for Research in Economics and Statistics.
    2. Bec, Frédérique & Bouabdallah, Othman & Ferrara, Laurent, 2015. "Comparing the shape of recoveries: France, the UK and the US," Economic Modelling, Elsevier, vol. 44(C), pages 327-334.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Morley James & Piger Jeremy & Tien Pao-Lin, 2013. "Reproducing business cycle features: are nonlinear dynamics a proxy for multivariate information?," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 17(5), pages 483-498, December.
    2. James Morley & Jeremy Piger, 2006. "The Importance of Nonlinearity in Reproducing Business Cycle Features," Contributions to Economic Analysis, in: Nonlinear Time Series Analysis of Business Cycles, pages 75-95, Emerald Group Publishing Limited.
    3. Chang‐Jin Kim & James Morley & Jeremy Piger, 2005. "Nonlinearity and the permanent effects of recessions," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 20(2), pages 291-309.
    4. David N. DeJong & Hariharan Dharmarajan & Roman Liesenfeld & Jean-Francois Richard, 2008. "Exploiting Non-Linearities in GDP Growth for Forecasting and Anticipating Regime Changes," Working Paper 367, Department of Economics, University of Pittsburgh, revised Sep 2008.
    5. Bec, Frédérique & Bouabdallah, Othman & Ferrara, Laurent, 2015. "Comparing the shape of recoveries: France, the UK and the US," Economic Modelling, Elsevier, vol. 44(C), pages 327-334.
    6. Giordani, Paolo & Kohn, Robert & van Dijk, Dick, 2007. "A unified approach to nonlinearity, structural change, and outliers," Journal of Econometrics, Elsevier, vol. 137(1), pages 112-133, March.
    7. L.A. Gil-Alana, 2005. "Fractional Cyclical Structures & Business Cycles in the Specification of the US Real Output," European Research Studies Journal, European Research Studies Journal, vol. 0(1-2), pages 99-126.
    8. Peter M. Summers & Penelope A. Smith, 2005. "How well do Markov switching models describe actual business cycles? The case of synchronization," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 20(2), pages 253-274.
    9. Candelon, Bertrand & Metiu, Norbert & Straetmans, Stefan, 2013. "Disentangling economic recessions and depressions," Discussion Papers 43/2013, Deutsche Bundesbank.
    10. Bec, F. & Bouabdallah, O. & Ferrara, L., 2011. "The possible shapes of recoveries in Markov-switching models," Working papers 321, Banque de France.
    11. George Athanasopoulos & Heather M. Anderson & Farshid Vahid, 2007. "Nonlinear autoregressive leading indicator models of output in G-7 countries," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 22(1), pages 63-87.
    12. Michael T. Owyang & Jeremy Piger & Howard J. Wall, 2005. "Business Cycle Phases in U.S. States," The Review of Economics and Statistics, MIT Press, vol. 87(4), pages 604-616, November.
    13. Zeng, Songlin & Bec, Frédérique, 2015. "Do stock returns rebound after bear markets? An empirical analysis from five OECD countries," Journal of Empirical Finance, Elsevier, vol. 30(C), pages 50-61.
    14. Adrian Pagan, 2001. "The Getting of Macroeconomic Wisdom," International Economic Association Series, in: Jacques Drèze (ed.), Advances in Macroeconomic Theory, chapter 11, pages 219-235, Palgrave Macmillan.
    15. Juergen Bierbaumer-Polly, 2012. "Regional and Sectoral Business Cycles - Key Features for the Austrian economy," EcoMod2012 4074, EcoMod.
    16. Medhioub, Imed, 2007. "Asymétrie des cycles économiques et changement de régimes : cas de la Tunisie," L'Actualité Economique, Société Canadienne de Science Economique, vol. 83(4), pages 529-553, décembre.
    17. Theobald, Thomas, 2013. "Markov Switching with Endogenous Number of Regimes and Leading Indicators in a Real-Time Business Cycle Forecast," VfS Annual Conference 2013 (Duesseldorf): Competition Policy and Regulation in a Global Economic Order 79911, Verein für Socialpolitik / German Economic Association.
    18. Olivier Darné & Laurent Ferrara, 2011. "Identification of Slowdowns and Accelerations for the Euro Area Economy," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 73(3), pages 335-364, June.
    19. Dovern, Jonas & Jannsen, Nils, 2017. "Systematic errors in growth expectations over the business cycle," International Journal of Forecasting, Elsevier, vol. 33(4), pages 760-769.

    More about this item

    JEL classification:

    • E30 - Macroeconomics and Monetary Economics - - Prices, Business Fluctuations, and Cycles - - - General (includes Measurement and Data)
    • C52 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Evaluation, Validation, and Selection

    NEP fields

    This paper has been announced in the following NEP Reports:

    Lists

    This item is featured on the following reading lists, Wikipedia, or ReplicationWiki pages:
    1. Economic Logic blog

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wes:weswpa:2009-003. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Manolis Kaparakis (email available below). General contact details of provider: https://edirc.repec.org/data/edwesus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.