IDEAS home Printed from https://ideas.repec.org/p/wbk/wbrwps/10964.html
   My bibliography  Save this paper

Yielding Insights : Machine Learning-Driven Imputations to Filling Agricultural Data Gaps

Author

Listed:
  • Ismael Yacoubou Djima
  • Marco Tiberti
  • Talip Kilic

Abstract

This paper addresses the challenge of missing crop yield data in large-scale agricultural surveys, where crop-cutting, the most accurate method for yield measurement, is often limited due to cost constraints. Multiple imputation techniques, supported by machine learning models are used to predict missing yield data. This method is validated using survey data from Mali, which includes both crop-cut and self-reported yield information. The analysis covers several crops, providing insights into the importance of different predictors, including farmer-reported yields and geo-spatial variables, and the conditions under which the approach is valid. The findings show that machine learning-based imputations can provide accurate yield estimates, especially for crops with low intercropping rates and higher commercialization. However, survey-to-survey imputations are less accurate than within-survey imputations, suggesting limitations in extrapolating data across different survey rounds. The study contributes valuable insights into improving cost-efficiency in agricultural surveys and the potential of imputation methods.

Suggested Citation

  • Ismael Yacoubou Djima & Marco Tiberti & Talip Kilic, 2024. "Yielding Insights : Machine Learning-Driven Imputations to Filling Agricultural Data Gaps," Policy Research Working Paper Series 10964, The World Bank.
  • Handle: RePEc:wbk:wbrwps:10964
    as

    Download full text from publisher

    File URL: https://documents.worldbank.org/curated/en/099853011042416192/pdf/IDU-e826032d-5dfa-438b-89e3-d30757a1d769.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Michler, Jeffrey D. & Josephson, Anna & Kilic, Talip & Murray, Siobhan, 2022. "Privacy protection, measurement error, and the integration of remote sensing and socioeconomic survey data," Journal of Development Economics, Elsevier, vol. 158(C).
    2. Calogero Carletto & Dean Jolliffe & Raka Banerjee, 2015. "From Tragedy to Renaissance: Improving Agricultural Data for Better Policies," Journal of Development Studies, Taylor & Francis Journals, vol. 51(2), pages 133-148, February.
    3. Wollburg, Philip & Tiberti, Marco & Zezza, Alberto, 2021. "Recall length and measurement error in agricultural surveys," Food Policy, Elsevier, vol. 100(C).
    4. Yacoubou Djima, Ismael & Kilic, Talip, 2024. "Attenuating measurement errors in agricultural productivity analysis by combining objective and self-reported survey data," Journal of Development Economics, Elsevier, vol. 168(C).
    5. Susan Athey, 2018. "The Impact of Machine Learning on Economics," NBER Chapters, in: The Economics of Artificial Intelligence: An Agenda, pages 507-547, National Bureau of Economic Research, Inc.
    6. Desiere, Sam & Jolliffe, Dean, 2018. "Land productivity and plot size: Is measurement error driving the inverse relationship?," Journal of Development Economics, Elsevier, vol. 130(C), pages 84-98.
    7. Gourlay, Sydney & Kilic, Talip & Lobell, David B., 2019. "A new spin on an old debate: Errors in farmer-reported production and their implications for inverse scale - Productivity relationship in Uganda," Journal of Development Economics, Elsevier, vol. 141(C).
    8. Azzari,George & Jain,Shruti & Jeffries,Graham & Kilic,Talip & Murray,Siobhan, 2021. "Understanding the Requirements for Surveys to Support Satellite-Based Crop Type Mapping : Evidence from Sub-Saharan Africa," Policy Research Working Paper Series 9609, The World Bank.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yacoubou Djima, Ismael & Kilic, Talip, 2024. "Attenuating measurement errors in agricultural productivity analysis by combining objective and self-reported survey data," Journal of Development Economics, Elsevier, vol. 168(C).
    2. Adzawla, William & Setsoafia, Edinam D. & Setsoafia, Eugene D. & Amoabeng-Nimako, Solomon & Atakora, Williams K. & Bindraban, Prem D., 2024. "Accuracy of agricultural data and implications for policy: Evidence from maize farmer recall surveys and crop cuts in the Guinea Savannah zone of Ghana," Agricultural Systems, Elsevier, vol. 214(C).
    3. Wollburg, Philip & Tiberti, Marco & Zezza, Alberto, 2021. "Recall length and measurement error in agricultural surveys," Food Policy, Elsevier, vol. 100(C).
    4. Abay,Kibrom A. & Barrett,Christopher B. & Kilic,Talip & Moylan,Heather G. & Ilukor,John & Vundru,Wilbert Drazi, 2022. "Nonclassical Measurement Error and Farmers’ Response to Information Reveal Behavioral Anomalies," Policy Research Working Paper Series 9908, The World Bank.
    5. Abay, Kibrom A. & Barrett, Christopher B. & Kilic, Talip & Moylan, Heather & Ilukor, John & Vundru, Wilbert Drazi, 2023. "Nonclassical measurement error and farmers’ response to information treatment," Journal of Development Economics, Elsevier, vol. 164(C).
    6. Kosmowski, Frederic & Chamberlin, Jordan & Ayalew, Hailemariam & Sida, Tesfaye & Abay, Kibrom & Craufurd, Peter, 2021. "How accurate are yield estimates from crop cuts? Evidence from smallholder maize farms in Ethiopia," Food Policy, Elsevier, vol. 102(C).
    7. Sebastian Heinen, 2022. "Rwanda’s Agricultural Transformation Revisited: Stagnating Food Production, Systematic Overestimation, and a Flawed Performance Contract System," Journal of Development Studies, Taylor & Francis Journals, vol. 58(10), pages 2044-2064, October.
    8. Carletto,Calogero & Dillon,Andrew S. & Zezza,Alberto, 2021. "Agricultural Data Collection to Minimize Measurement Error and Maximize Coverage," Policy Research Working Paper Series 9745, The World Bank.
    9. Elena Serfilippi & Daniele Giovannucci & David Ameyaw & Ankur Bansal & Thomas Asafua Nketsia Wobill & Roberta Blankson & Rashi Mishra, 2022. "Benefits and Challenges of Making Data More Agile: A Review of Recent Key Approaches in Agriculture," Sustainability, MDPI, vol. 14(24), pages 1-18, December.
    10. Fang Xia & Lingling Hou & Songqing Jin & Dongqing Li, 2020. "Land size and productivity in the livestock sector: evidence from pastoral areas in China," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 64(3), pages 867-888, July.
    11. Beegle, Kathleen & Dillon, Andrew & Karlan, Dean & Udry, Christopher, 2024. "Introduction to the journal of development economics special issue on methods and measurement," Journal of Development Economics, Elsevier, vol. 170(C).
    12. Taylor, Matthew P.H. & Helfand, Steven M., 2021. "The Farm Size – Productivity Relationship in the Wake of Market Reform: An Analysis of Mexican Family Farms," 2021 Conference, August 17-31, 2021, Virtual 315138, International Association of Agricultural Economists.
    13. Kilic, Talip & Moylan, Heather & Ilukor, John & Mtengula, Clement & Pangapanga-Phiri, Innocent, 2021. "Root for the tubers: Extended-harvest crop production and productivity measurement in surveys," Food Policy, Elsevier, vol. 102(C).
    14. Abate, Gashaw T. & de Brauw, Alan & Hirvonen, Kalle & Wolle, Abdulazize, 2023. "Measuring consumption over the phone: Evidence from a survey experiment in urban Ethiopia," Journal of Development Economics, Elsevier, vol. 161(C).
    15. Omotilewa, Oluwatoba J. & Jayne, T.S. & Muyanga, Milu & Aromolaran, Adebayo B. & Liverpool-Tasie, Lenis Saweda O. & Awokuse, Titus, 2021. "A revisit of farm size and productivity: Empirical evidence from a wide range of farm sizes in Nigeria," World Development, Elsevier, vol. 146(C).
    16. Azzari,George & Jain,Shruti & Jeffries,Graham & Kilic,Talip & Murray,Siobhan, 2021. "Understanding the Requirements for Surveys to Support Satellite-Based Crop Type Mapping : Evidence from Sub-Saharan Africa," Policy Research Working Paper Series 9609, The World Bank.
    17. C. S. C. Sekhar & Namrata Thapa, 2023. "Rural market imperfections in India: Revisiting old debates with new evidence," Development Policy Review, Overseas Development Institute, vol. 41(5), September.
    18. Kibrom A. Abay & Tesfamicheal Wossen & Jordan Chamberlin, 2023. "Mismeasurement and efficiency estimates: Evidence from smallholder survey data in Africa," Journal of Agricultural Economics, Wiley Blackwell, vol. 74(2), pages 413-434, June.
    19. Kibrom A. Abay, 2020. "Measurement errors in agricultural data and their implications on marginal returns to modern agricultural inputs," Agricultural Economics, International Association of Agricultural Economists, vol. 51(3), pages 323-341, May.
    20. Markhof,Yannick Valentin & Ponzini,Giulia & Wollburg,Philip Randolph, 2022. "Measuring Disaster Crop Production Losses Using Survey Microdata : Evidence from Sub-Saharan Africa," Policy Research Working Paper Series 9968, The World Bank.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wbk:wbrwps:10964. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Roula I. Yazigi (email available below). General contact details of provider: https://edirc.repec.org/data/dvewbus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.