IDEAS home Printed from https://ideas.repec.org/p/was/dpaper/1909.html
   My bibliography  Save this paper

Impact of the Saitama Prefecture Target-Setting Emissions Trading Program on the Adoption of Low-Carbon Technology

Author

Listed:
  • Mitsutsugu Hamamoto

    (Faculty of Economics, Dokkyo University, 1-1 Gakuen-cho, Soka-shi, Saitama, 340-0042, Japan.)

Abstract

This paper investigates the impacts of the Target-Setting Emissions Trading (TSET) Program launched by Saitama Prefecture in Japan in 2011 on the adoption of low-carbon technology. Using facility-level data on the manufacturing sector, the causal relationship between implementation of the program and investment in high-efficiency equipment is estimated. The results show that the TSET Program promoted the adoption of high-efficiency machines and devices for the first three years of the second compliance period, whereas the program did not spur investments in high-efficiency equipment during the first compliance period. These results suggest that the manufacturing facilities may have adopted relatively cheaper emissions reduction plans in the first compliance period such as improvements to equipment they already owned, whereas in the second compliance period, when the emissions targets became stricter, they allocated money and resources to introduce high-efficiency equipment. These findings indicate that the TSET Program succeeded in encouraging emissions reduction efforts by facilities in the manufacturing sector covered by the scheme, even though the program lacks penalties for noncompliance.

Suggested Citation

  • Mitsutsugu Hamamoto, 2019. "Impact of the Saitama Prefecture Target-Setting Emissions Trading Program on the Adoption of Low-Carbon Technology," RIEEM Discussion Paper Series 1909, Research Institute for Environmental Economics and Management, Waseda University.
  • Handle: RePEc:was:dpaper:1909
    as

    Download full text from publisher

    File URL: http://www.waseda.jp/prj-rieem/dp/dp1909.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ralf Martin & Mirabelle Muûls & Ulrich J. Wagner, 2016. "The Impact of the European Union Emissions Trading Scheme on Regulated Firms: What Is the Evidence after Ten Years?," Review of Environmental Economics and Policy, Association of Environmental and Resource Economists, vol. 10(1), pages 129-148.
    2. Petrick, Sebastian & Wagner, Ulrich J., 2014. "The impact of carbon trading on industry: Evidence from German manufacturing firms," Kiel Working Papers 1912, Kiel Institute for the World Economy (IfW Kiel).
    3. Brian C. Murray & Peter T. Maniloff & Evan M. Murray, 2015. "Why Have Greenhouse Emissions in RGGI States Declined? An Econometric Attribution to Economic, Energy Market and Policy Factors (Payne Institute Policy Brief)," Payne Institute Policy Briefs 2014-04, Colorado School of Mines, Division of Economics and Business.
    4. Toshi H. Arimura & Tatsuya Abe, 2021. "The impact of the Tokyo emissions trading scheme on office buildings: what factor contributed to the emission reduction?," Environmental Economics and Policy Studies, Springer;Society for Environmental Economics and Policy Studies - SEEPS, vol. 23(3), pages 517-533, July.
    5. Löfgren, Åsa & Wråke, Markus & Hagberg, Tomas & Roth, Susanna, 2013. "The Effect of EU-ETS on Swedish Industry's Investment in Carbon Mitigating Technologies," Working Papers in Economics 565, University of Gothenburg, Department of Economics.
    6. Suzi Kerr & Richard G. Newell, 2003. "Policy‐Induced Technology Adoption: Evidence from the U.S. Lead Phasedown," Journal of Industrial Economics, Wiley Blackwell, vol. 51(3), pages 317-343, September.
    7. Raphael Calel & Antoine Dechezleprêtre, 2016. "Environmental Policy and Directed Technological Change: Evidence from the European Carbon Market," The Review of Economics and Statistics, MIT Press, vol. 98(1), pages 173-191, March.
    8. Barry Anderson & Corrado Di Maria, 2011. "Abatement and Allocation in the Pilot Phase of the EU ETS," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 48(1), pages 83-103, January.
    9. Lee, Myoung-jae, 2005. "Micro-Econometrics for Policy, Program and Treatment Effects," OUP Catalogue, Oxford University Press, number 9780199267699.
    10. Murray, Brian C. & Maniloff, Peter T., 2015. "Why have greenhouse emissions in RGGI states declined? An econometric attribution to economic, energy market, and policy factors," Energy Economics, Elsevier, vol. 51(C), pages 581-589.
    11. Guido W. Imbens & Jeffrey M. Wooldridge, 2009. "Recent Developments in the Econometrics of Program Evaluation," Journal of Economic Literature, American Economic Association, vol. 47(1), pages 5-86, March.
    12. Keisuke Hirano & Guido W. Imbens & Geert Ridder, 2003. "Efficient Estimation of Average Treatment Effects Using the Estimated Propensity Score," Econometrica, Econometric Society, vol. 71(4), pages 1161-1189, July.
    13. Jeffrey M Wooldridge, 2010. "Econometric Analysis of Cross Section and Panel Data," MIT Press Books, The MIT Press, edition 2, volume 1, number 0262232588, April.
    14. repec:dau:papers:123456789/10174 is not listed on IDEAS
    15. Borghesi, Simone & Cainelli, Giulio & Mazzanti, Massimiliano, 2012. "Brown Sunsets and Green Dawns in the Industrial Sector: Environmental Innovations, Firm Behavior and the European Emission Trading," Climate Change and Sustainable Development 121701, Fondazione Eni Enrico Mattei (FEEM).
    16. David Popp, 2003. "Pollution control innovations and the Clean Air Act of 1990," Journal of Policy Analysis and Management, John Wiley & Sons, Ltd., vol. 22(4), pages 641-660.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Satoshi Nakano & Ayu Washizu, 2021. "Analysis of inter-regional effects caused by the wide-area operation of the power grid in Japan: an implication for carbon pricing schemes," Environmental Economics and Policy Studies, Springer;Society for Environmental Economics and Policy Studies - SEEPS, vol. 23(3), pages 535-556, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mitsutsugu Hamamoto, 2021. "Impact of the Saitama Prefecture Target-Setting Emissions Trading Program on the adoption of low-carbon technology," Environmental Economics and Policy Studies, Springer;Society for Environmental Economics and Policy Studies - SEEPS, vol. 23(3), pages 501-515, July.
    2. Toshi H. Arimura & Tatsuya Abe, 2021. "The impact of the Tokyo emissions trading scheme on office buildings: what factor contributed to the emission reduction?," Environmental Economics and Policy Studies, Springer;Society for Environmental Economics and Policy Studies - SEEPS, vol. 23(3), pages 517-533, July.
    3. Sadayuki, Taisuke & Arimura, Toshi H., 2021. "Do regional emission trading schemes lead to carbon leakage within firms? Evidence from Japan," Energy Economics, Elsevier, vol. 104(C).
    4. Marit Klemetsen & Knut Einar Rosendahl & Anja Lund Jakobsen, 2020. "The Impacts Of The Eu Ets On Norwegian Plants’ Environmental And Economic Performance," Climate Change Economics (CCE), World Scientific Publishing Co. Pte. Ltd., vol. 11(01), pages 1-32, February.
    5. Benedikt Downar & Jürgen Ernstberger & Stefan Reichelstein & Sebastian Schwenen & Aleksandar Zaklan, 2021. "The impact of carbon disclosure mandates on emissions and financial operating performance," Review of Accounting Studies, Springer, vol. 26(3), pages 1137-1175, September.
    6. Chunhua Lu & Hong Li, 2023. "Have China’s Regional Carbon Emissions Trading Schemes Promoted Industrial Resource Allocation Efficiency? The Evidence from Heavily Polluted Industries at the Provincial Level," Sustainability, MDPI, vol. 15(3), pages 1-20, February.
    7. aus dem Moore, Nils & Großkurth, Philipp & Themann, Michael, 2017. "Multinational corporations and the EU emissions trading system: Asset erosion and creeping deindustrialization?," Ruhr Economic Papers 719, RWI - Leibniz-Institut für Wirtschaftsforschung, Ruhr-University Bochum, TU Dortmund University, University of Duisburg-Essen.
    8. Koch, Nicolas & Basse Mama, Houdou, 2019. "Does the EU Emissions Trading System induce investment leakage? Evidence from German multinational firms," Energy Economics, Elsevier, vol. 81(C), pages 479-492.
    9. Joltreau, Eugénie & Sommerfeld, Katrin, 2016. "Why does emissions trading under the EU ETS not affect firms' competitiveness? Empirical findings from the literature," ZEW Discussion Papers 16-062, ZEW - Leibniz Centre for European Economic Research.
    10. Raphael Calel, 2020. "Adopt or Innovate: Understanding Technological Responses to Cap-and-Trade," American Economic Journal: Economic Policy, American Economic Association, vol. 12(3), pages 170-201, August.
    11. Dechezleprêtre, Antoine & Nachtigall, Daniel & Venmans, Frank, 2023. "The joint impact of the European Union emissions trading system on carbon emissions and economic performance," Journal of Environmental Economics and Management, Elsevier, vol. 118(C).
    12. aus dem Moore, Nils & Großkurth, Philipp & Themann, Michael, 2019. "Multinational corporations and the EU Emissions Trading System: The specter of asset erosion and creeping deindustrialization," Journal of Environmental Economics and Management, Elsevier, vol. 94(C), pages 1-26.
    13. Benedikt Downar & Jürgen Ernstberger & Hannes Rettenbacher & Sebastian Schwenen & Aleksandar Zaklan, 2019. "Fighting Climate Change with Disclosure? The Real Effects of Mandatory Greenhouse Gas Emission Disclosure," Discussion Papers of DIW Berlin 1795, DIW Berlin, German Institute for Economic Research.
    14. Pablo Lavado & Gonzalo Rivera, 2016. "Identifying Treatment Effects with Data Combination and Unobserved Heterogeneity," Working Papers 79, Peruvian Economic Association.
    15. Löschel, Andreas & Lutz, Benjamin Johannes & Managi, Shunsuke, 2019. "The impacts of the EU ETS on efficiency and economic performance – An empirical analyses for German manufacturing firms," Resource and Energy Economics, Elsevier, vol. 56(C), pages 71-95.
    16. Ren, Shenggang & Hu, Yucai & Zheng, Jingjing & Wang, Yangjie, 2020. "Emissions trading and firm innovation: Evidence from a natural experiment in China," Technological Forecasting and Social Change, Elsevier, vol. 155(C).
    17. Hao Dong & Daniel L. Millimet, 2020. "Propensity Score Weighting with Mismeasured Covariates: An Application to Two Financial Literacy Interventions," JRFM, MDPI, vol. 13(11), pages 1-24, November.
    18. Nitish Gupta & Ruchir Kaul & Satwik Gupta & Jay Shah, 2021. "Study Of German Manufacturing Firms: Causal Impact Of European Union Emission Trading Scheme On Firm Behaviour And Economic Performance," Papers 2108.07116, arXiv.org.
    19. Simone Lazzini & Zeila Occhipinti & Angela Parenti & Roberto Verona, 2021. "Disentangling economic crisis effects from environmental regulation effects: Implications for sustainable development," Business Strategy and the Environment, Wiley Blackwell, vol. 30(5), pages 2332-2353, July.
    20. Lu, Yunguo & Zhang, Lin, 2022. "National mitigation policy and the competitiveness of Chinese firms," Energy Economics, Elsevier, vol. 109(C).

    More about this item

    Keywords

    Emissions trading; Low-carbon technology; Technology diffusion;
    All these keywords.

    JEL classification:

    • Q54 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics - - - Climate; Natural Disasters and their Management; Global Warming
    • Q55 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics - - - Environmental Economics: Technological Innovation
    • Q58 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics - - - Environmental Economics: Government Policy

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:was:dpaper:1909. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Takuro Miyamoto (email available below). General contact details of provider: http://www.waseda.jp/prj-rieem/en .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.