IDEAS home Printed from https://ideas.repec.org/p/vid/wpaper/0803.html
   My bibliography  Save this paper

Extrapolative Projections of Mortality: Towards a More Consistent Method

Author

Listed:
  • Dalkhat M. Ediev

Abstract

After a comparative study of the Lee-Carter forecasting method and looking into the direct extrapolation of mortality by age and sex, this paper advocates the use of the latter method. The method is, however, supplemented by additional procedures in order to improve its efficiency in the short run and preclude implausible mortality patterns in the long run. The short-run efficiency is improved by building the forecast on data from the most recent periods of age/sex-specific duration, when the mortality dynamics exhibit a steady trend. In the long run, the rates of the decline in mortality are assumed to converge to a plausible function of age and sex, which is derived from the data based on the assumption that it is a monotonic function of age. The framework proposed also provides a natural basis for developing multi-regional projection methods and also for introducing uncertainty into the projection.

Suggested Citation

  • Dalkhat M. Ediev, 2009. "Extrapolative Projections of Mortality: Towards a More Consistent Method," VID Working Papers 0803, Vienna Institute of Demography (VID) of the Austrian Academy of Sciences in Vienna.
  • Handle: RePEc:vid:wpaper:0803
    as

    Download full text from publisher

    File URL: https://www.oeaw.ac.at/fileadmin/subsites/Institute/VID/PDF/Publications/Working_Papers/WP2008_03.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Nan Li & Ronald Lee, 2005. "Coherent mortality forecasts for a group of populations: An extension of the lee-carter method," Demography, Springer;Population Association of America (PAA), vol. 42(3), pages 575-594, August.
    2. Bulatao, Rodolfo A. & Bos, Eduard & Stephens, Patience W. & My T. Vu, 1989. "Projecting mortality for all countries," Policy Research Working Paper Series 337, The World Bank.
    3. Ronald Lee & Timothy Miller, 2001. "Evaluating the performance of the lee-carter method for forecasting mortality," Demography, Springer;Population Association of America (PAA), vol. 38(4), pages 537-549, November.
    4. Robert McNown & Andrei Rogers, 1989. "Forecasting Mortality: A Parameterized Time Series Approach," Demography, Springer;Population Association of America (PAA), vol. 26(4), pages 645-660, November.
    5. repec:cai:poeine:pope_201_0157 is not listed on IDEAS
    6. John Bongaarts, 2005. "Long-range trends in adult mortality: Models and projection methods," Demography, Springer;Population Association of America (PAA), vol. 42(1), pages 23-49, February.
    7. Nathan Keyfitz, 1993. "Thirty years of demography and Demography," Demography, Springer;Population Association of America (PAA), vol. 30(4), pages 533-549, November.
    8. Dalkhat Ediev & Richard Gisser, 2007. "Reconstruction of historical series of life tables and of age-sex structures for the Austrian population in the 19th and the first half of the 20th century," Vienna Yearbook of Population Research, Vienna Institute of Demography (VID) of the Austrian Academy of Sciences in Vienna, vol. 5(1), pages 327-355.
    9. Wolfgang Lutz & Warren Sanderson & Sergei Scherbov, 1997. "Doubling of world population unlikely," Nature, Nature, vol. 387(6635), pages 803-805, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Booth, Heather, 2006. "Demographic forecasting: 1980 to 2005 in review," International Journal of Forecasting, Elsevier, vol. 22(3), pages 547-581.
    2. Adrian Raftery & Jennifer Chunn & Patrick Gerland & Hana Ševčíková, 2013. "Bayesian Probabilistic Projections of Life Expectancy for All Countries," Demography, Springer;Population Association of America (PAA), vol. 50(3), pages 777-801, June.
    3. Nan Li & Ronald Lee & Patrick Gerland, 2013. "Extending the Lee-Carter Method to Model the Rotation of Age Patterns of Mortality Decline for Long-Term Projections," Demography, Springer;Population Association of America (PAA), vol. 50(6), pages 2037-2051, December.
    4. Péter Vékás, 2020. "Rotation of the age pattern of mortality improvements in the European Union," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 28(3), pages 1031-1048, September.
    5. Hyndman, Rob J. & Booth, Heather, 2008. "Stochastic population forecasts using functional data models for mortality, fertility and migration," International Journal of Forecasting, Elsevier, vol. 24(3), pages 323-342.
    6. Basellini, Ugofilippo & Camarda, Carlo Giovanni & Booth, Heather, 2023. "Thirty years on: A review of the Lee–Carter method for forecasting mortality," International Journal of Forecasting, Elsevier, vol. 39(3), pages 1033-1049.
    7. Christina Bohk-Ewald & Marcus Ebeling & Roland Rau, 2017. "Lifespan Disparity as an Additional Indicator for Evaluating Mortality Forecasts," Demography, Springer;Population Association of America (PAA), vol. 54(4), pages 1559-1577, August.
    8. Norkhairunnisa Redzwan & Rozita Ramli, 2022. "A Bibliometric Analysis of Research on Stochastic Mortality Modelling and Forecasting," Risks, MDPI, vol. 10(10), pages 1-17, October.
    9. de Jong, Piet & Tickle, Leonie & Xu, Jianhui, 2020. "A more meaningful parameterization of the Lee–Carter model," Insurance: Mathematics and Economics, Elsevier, vol. 94(C), pages 1-8.
    10. David Blake & Marco Morales & Enrico Biffis & Yijia Lin & Andreas Milidonis, 2017. "Special Edition: Longevity 10 – The Tenth International Longevity Risk and Capital Markets Solutions Conference," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 84(S1), pages 515-532, April.
    11. Heather Booth & Rob Hyndman & Leonie Tickle & Piet de Jong, 2006. "Lee-Carter mortality forecasting: a multi-country comparison of variants and extensions," Demographic Research, Max Planck Institute for Demographic Research, Rostock, Germany, vol. 15(9), pages 289-310.
    12. Niels Haldrup & Carsten P. T. Rosenskjold, 2019. "A Parametric Factor Model of the Term Structure of Mortality," Econometrics, MDPI, vol. 7(1), pages 1-22, March.
    13. Blake, David & Cairns, Andrew J.G., 2021. "Longevity risk and capital markets: The 2019-20 update," Insurance: Mathematics and Economics, Elsevier, vol. 99(C), pages 395-439.
    14. Marie-Pier Bergeron-Boucher & Vladimir Canudas-Romo & James E. Oeppen & James W. Vaupel, 2017. "Coherent forecasts of mortality with compositional data analysis," Demographic Research, Max Planck Institute for Demographic Research, Rostock, Germany, vol. 37(17), pages 527-566.
    15. Jens Robben & Katrien Antonio & Sander Devriendt, 2022. "Assessing the Impact of the COVID-19 Shock on a Stochastic Multi-Population Mortality Model," Risks, MDPI, vol. 10(2), pages 1-33, January.
    16. Ayuso, Mercedes & Bravo, Jorge M. & Holzmann, Robert, 2021. "Getting life expectancy estimates right for pension policy: period versus cohort approach," Journal of Pension Economics and Finance, Cambridge University Press, vol. 20(2), pages 212-231, April.
    17. Hatzopoulos, P. & Haberman, S., 2009. "A parameterized approach to modeling and forecasting mortality," Insurance: Mathematics and Economics, Elsevier, vol. 44(1), pages 103-123, February.
    18. Rui Zhou & Johnny Siu-Hang Li & Ken Seng Tan, 2013. "Pricing Standardized Mortality Securitizations: A Two-Population Model With Transitory Jump Effects," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 80(3), pages 733-774, September.
    19. Yanlin Shi & Sixian Tang & Jackie Li, 2020. "A Two-Population Extension of the Exponential Smoothing State Space Model with a Smoothing Penalisation Scheme," Risks, MDPI, vol. 8(3), pages 1-18, June.
    20. Börger, Matthias & Schupp, Johannes, 2018. "Modeling trend processes in parametric mortality models," Insurance: Mathematics and Economics, Elsevier, vol. 78(C), pages 369-380.

    More about this item

    Keywords

    Mortality forecasting; direct extrapolation; age-specific death rates; Lee-Carter method;
    All these keywords.

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:vid:wpaper:0803. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Bernhard Rengs (email available below). General contact details of provider: https://www.oeaw.ac.at/vid/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.