A comparison among Reinforcement Learning algorithms in financial trading systems
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Marco Corazza & Andrea Sangalli, 2015. "Q-Learning and SARSA: a comparison between two intelligent stochastic control approaches for financial trading," Working Papers 2015:15, Department of Economics, University of Venice "Ca' Foscari", revised 2015.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Yuling Huang & Kai Cui & Yunlin Song & Zongren Chen, 2023. "A Multi-Scaling Reinforcement Learning Trading System Based on Multi-Scaling Convolutional Neural Networks," Mathematics, MDPI, vol. 11(11), pages 1-19, May.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Yuling Huang & Kai Cui & Yunlin Song & Zongren Chen, 2023. "A Multi-Scaling Reinforcement Learning Trading System Based on Multi-Scaling Convolutional Neural Networks," Mathematics, MDPI, vol. 11(11), pages 1-19, May.
- Terry Lingze Meng & Matloob Khushi, 2019. "Reinforcement Learning in Financial Markets," Data, MDPI, vol. 4(3), pages 1-17, July.
More about this item
Keywords
Reinforcement Learning; SARSA; Q-Learning; Greedy-GQ; financial trading system; Italian FTSE Mib stock market.;All these keywords.
JEL classification:
- C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
- C54 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Quantitative Policy Modeling
- E37 - Macroeconomics and Monetary Economics - - Prices, Business Fluctuations, and Cycles - - - Forecasting and Simulation: Models and Applications
- G17 - Financial Economics - - General Financial Markets - - - Financial Forecasting and Simulation
NEP fields
This paper has been announced in the following NEP Reports:- NEP-CMP-2020-02-03 (Computational Economics)
- NEP-MAC-2020-02-03 (Macroeconomics)
- NEP-ORE-2020-02-03 (Operations Research)
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ven:wpaper:2019:33. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Geraldine Ludbrook (email available below). General contact details of provider: https://edirc.repec.org/data/dsvenit.html .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.