IDEAS home Printed from https://ideas.repec.org/a/gam/jdataj/v4y2019i3p110-d252469.html
   My bibliography  Save this article

Reinforcement Learning in Financial Markets

Author

Listed:
  • Terry Lingze Meng

    (School of Computer Science, Building J12, University of Sydney, 1 Cleveland Street, Darlington, NSW 2006, Australia)

  • Matloob Khushi

    (School of Computer Science, Building J12, University of Sydney, 1 Cleveland Street, Darlington, NSW 2006, Australia)

Abstract

Recently there has been an exponential increase in the use of artificial intelligence for trading in financial markets such as stock and forex. Reinforcement learning has become of particular interest to financial traders ever since the program AlphaGo defeated the strongest human contemporary Go board game player Lee Sedol in 2016. We systematically reviewed all recent stock/forex prediction or trading articles that used reinforcement learning as their primary machine learning method. All reviewed articles had some unrealistic assumptions such as no transaction costs, no liquidity issues and no bid or ask spread issues. Transaction costs had significant impacts on the profitability of the reinforcement learning algorithms compared with the baseline algorithms tested. Despite showing statistically significant profitability when reinforcement learning was used in comparison with baseline models in many studies, some showed no meaningful level of profitability, in particular with large changes in the price pattern between the system training and testing data. Furthermore, few performance comparisons between reinforcement learning and other sophisticated machine/deep learning models were provided. The impact of transaction costs, including the bid/ask spread on profitability has also been assessed. In conclusion, reinforcement learning in stock/forex trading is still in its early development and further research is needed to make it a reliable method in this domain.

Suggested Citation

  • Terry Lingze Meng & Matloob Khushi, 2019. "Reinforcement Learning in Financial Markets," Data, MDPI, vol. 4(3), pages 1-17, July.
  • Handle: RePEc:gam:jdataj:v:4:y:2019:i:3:p:110-:d:252469
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2306-5729/4/3/110/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2306-5729/4/3/110/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Marco Corazza & Andrea Sangalli, 2015. "Q-Learning and SARSA: a comparison between two intelligent stochastic control approaches for financial trading," Working Papers 2015:15, Department of Economics, University of Venice "Ca' Foscari", revised 2015.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ben Hambly & Renyuan Xu & Huining Yang, 2023. "Recent advances in reinforcement learning in finance," Mathematical Finance, Wiley Blackwell, vol. 33(3), pages 437-503, July.
    2. J. C. Garza SepĂșlveda & F. Lopez-Irarragorri & S. E. Schaeffer, 2023. "Forecasting Forex Trend Indicators with Fuzzy Rough Sets," Computational Economics, Springer;Society for Computational Economics, vol. 62(1), pages 229-287, June.
    3. Adrian Millea, 2021. "Deep Reinforcement Learning for Trading—A Critical Survey," Data, MDPI, vol. 6(11), pages 1-25, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Marco Corazza & Giovanni Fasano & Riccardo Gusso & Raffaele Pesenti, 2019. "A comparison among Reinforcement Learning algorithms in financial trading systems," Working Papers 2019:33, Department of Economics, University of Venice "Ca' Foscari".
    2. Yuling Huang & Kai Cui & Yunlin Song & Zongren Chen, 2023. "A Multi-Scaling Reinforcement Learning Trading System Based on Multi-Scaling Convolutional Neural Networks," Mathematics, MDPI, vol. 11(11), pages 1-19, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jdataj:v:4:y:2019:i:3:p:110-:d:252469. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.